
Carolyn A Ecelbarger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetic Kidney Disease Represents a Locus of Opportunity. Frontiers in Physiology, 2021, 12, 650503.	2.8	0
2	Insulin receptor (InsR) deletion from renal tubule reduces kidney size and upregulates gluconeogenic capacity of the proximal tubule in mice. FASEB Journal, 2021, 35, .	0.5	0
3	Caloric Restriction and Cardiovascular Health: the Good, the Bad, and the Renin-Angiotensin System. Physiology, 2021, 36, 220-234.	3.1	2
4	DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. Journal of Endocrinology, 2021, 250, 49-65.	2.6	17
5	P2Y2 Receptor Promotes High-Fat Diet-Induced Obesity. Frontiers in Endocrinology, 2020, 11, 341.	3.5	23
6	Refining insulin signaling inÂthe proximal tubule at the level of the substrate. Kidney International, 2020, 97, 256-258.	5.2	5
7	miR-451 Loaded Exosomes Are Released by the Renal Cells in Response to Injury and Associated With Reduced Kidney Function in Human. Frontiers in Physiology, 2020, 11, 234.	2.8	19
8	Deletion of insulin receptor in the proximal tubule and fasting augment albumin excretion. Journal of Cellular Biochemistry, 2019, 120, 10688-10696.	2.6	12
9	Inducible renalâ€ŧubule insulin receptor (IR) knockout affects sodium transporter/channel expression and activity in a sexâ€dependent manner. FASEB Journal, 2019, 33, 864.7.	0.5	0
10	The increased expression of microRNAs 451, 638 and 362 in Urinary Exosomes of Human Subjects profiled as Diabetic and Hypertensive. FASEB Journal, 2019, 33, 716.5.	0.5	0
11	Single-tubule RNA-Seq uncovers signaling mechanisms that defend against hyponatremia in SIADH. Kidney International, 2018, 93, 128-146.	5.2	23
12	Chronic Insulin Infusion Down-Regulates Circulating and Urinary Nitric Oxide (NO) Levels Despite Molecular Changes in the Kidney Predicting Greater Endothelial NO Synthase Activity in Mice. International Journal of Molecular Sciences, 2018, 19, 2880.	4.1	8
13	Molecular Biology and Gene Regulation. , 2018, , 95-116.		0
14	Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis. Journal of Cellular Biochemistry, 2017, 118, 276-285.	2.6	29
15	Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signalling, 2017, 13, 239-248.	2.2	10
16	Sex Differences in Renal Physiology and Pathophysiology. , 2016, , 105-124.		3
17	Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats. PLoS ONE, 2016, 11, e0154055.	2.5	77
18	Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice. PLoS ONE, 2016, 11, e0147786.	2.5	13

CAROLYN A ECELBARGER

#	Article	IF	CITATIONS
19	Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiological Reports, 2016, 4, e13052.	1.7	8
20	Insulin Regulates Nitric Oxide Production in the Kidney Collecting Duct Cells. Journal of Biological Chemistry, 2015, 290, 5582-5591.	3.4	26
21	Targeting renal purinergic signalling for the treatment of lithiumâ€induced nephrogenic diabetes insipidus. Acta Physiologica, 2015, 214, 176-188.	3.8	28
22	Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice. Purinergic Signalling, 2015, 11, 507-518.	2.2	17
23	Role of insulin and insulinâ€likeâ€growth factor (IGF) receptors in renal proximal tubule (PT) phosphorus handling. FASEB Journal, 2015, 29, 970.1.	0.5	0
24	Effects of fructose feeding on mice with dual knockout of the insulin and insulinâ€likeâ€growth factor, type 1 (IGF1) receptors from proximalâ€ŧubule. FASEB Journal, 2015, 29, 961.4.	0.5	0
25	P2Y2 Receptor Facilitates Highâ€fat diet Induced Insulin Resistance. FASEB Journal, 2015, 29, 805.7.	0.5	2
26	Increase in renal proximal tubule GLUT5 and ketohexokinase in male mice, but not female mice, in response to highâ€fructose feeding may contribute to sex differences in renal responses (1135.3). FASEB Journal, 2014, 28, 1135.3.	0.5	1
27	Effects of 17βâ€estradiol replacement in a model of renal ischemia in the ovariectomized female apolipoprotein E knockout mouse (1135.2). FASEB Journal, 2014, 28, 1135.2.	0.5	Ο
28	Deletion of the Insulin Receptor in the Proximal Tubule Promotes Hyperglycemia. Journal of the American Society of Nephrology: JASN, 2013, 24, 1209-1214.	6.1	73
29	Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB Journal, 2013, 27, 2723-2732.	0.5	41
30	Altered thick ascending limb function in aging female mice consuming high quantities of fructoseâ€sweetened water. FASEB Journal, 2013, 27, 1115.13.	0.5	0
31	Role of the collecting duct insulin receptor in fluid homeostasis in response to high―and lowâ€NaCl diets FASEB Journal, 2013, 27, 911.9.	0.5	0
32	Role of the sex chromosomal complement (XX or XY) to impact blood pressure and natriuresis in the model of aldosterone escape. FASEB Journal, 2012, 26, 1096.6.	0.5	0
33	Impaired kidney function and anatomy in dietarilyâ€rescued calcineurin (alpha isoform) knockout mice. FASEB Journal, 2012, 26, 868.19.	0.5	0
34	Sex Chromosome Effects Unmasked in Angiotensin II–Induced Hypertension. Hypertension, 2010, 55, 1275-1282.	2.7	120
35	Molecular Biology and Gene Regulation of Vasopressin. , 2009, , 225-248.		3
36	Sex and Age Result in Differential Regulation of the Renal Thiazide-Sensitive NaCl Cotransporter and the Epithelial Sodium Channel in Angiotensin II-Infused Mice. American Journal of Nephrology, 2009, 30, 554-562.	3.1	30

#	Article	IF	CITATIONS
37	Candesartan Differentially Regulates Epithelial Sodium Channel in Cortex Versus Medulla of Streptozotocin-Induced Diabetic Rats. Journal of Epithelial Biology & Pharmacology, 2009, 2, 23-29.	1.2	7
38	Candesartan restored the altered renal insulin receptor protein and cytokine profile, and reduces nephropathy in the obese Zucker rat despite its propensity to worsen diabetes. FASEB Journal, 2009, 23, 604.2.	0.5	0
39	Time course of AQP-2 and ENaC regulation in the kidney in response to PPAR agonists associated with marked edema in rats. Pharmacological Research, 2008, 57, 383-392.	7.1	30
40	Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6469-6474.	7.1	75
41	Chronic Rosiglitazone Therapy Normalizes Expression of ACE1, SCD1 and other Genes in the Kidney of Obese Zucker Rats as Determined by Microarray Analysis. Experimental and Clinical Endocrinology and Diabetes, 2008, 116, 315-325.	1.2	22
42	Insulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes. American Journal of Physiology - Renal Physiology, 2007, 293, F974-F984.	2.7	102
43	Reduced Expression of Insulin Receptors in the Kidneys of Insulin-Resistant Rats. Journal of the American Society of Nephrology: JASN, 2007, 18, 2661-2671.	6.1	80
44	Trafficking of ENaC subunits in response to acute insulin in mouse kidney. American Journal of Physiology - Renal Physiology, 2007, 293, F178-F185.	2.7	59
45	Sex Differences in Renal Nitric Oxide Synthase, NAD(P)H Oxidase, and Blood Pressure in Obese Zucker Rats. Gender Medicine, 2007, 4, 214-229.	1.4	14
46	Increased systolic blood pressure and defective pressureâ€natriuresis in mice lacking the insulin receptor in the thick ascending limb through collecting duct. FASEB Journal, 2007, 21, A1194.	0.5	1
47	Candesartan differentially regulates distal sodium transporters and channel subunits in cortex versus medulla in streptozotocinâ€induced diabetic rats FASEB Journal, 2007, 21, A1331.	0.5	0
48	The abundance of medullary Naâ€Kâ€⊋Cl cotransporter (NKCC2) is increased by highâ€fat feeding and reduced by Tempol in Fisher 344 X Brown Norway (F344BN, F1) rats FASEB Journal, 2007, 21, A1195.	0.5	0
49	Sex differences in sodium transporter and channel expression in mice after angiotensin II infusion FASEB Journal, 2007, 21, A1416.	0.5	0
50	Sex and body-type interactions in the regulation of renal sodium transporter levels, urinary excretion, and activity in lean and obese zucker rats. Gender Medicine, 2006, 3, 309-327.	1.4	27
51	Renal ENaC subunit, Na–K–2Cl and Na–Cl cotransporter abundances in aged, water-restricted F344 × Brown Norway rats. Kidney International, 2006, 69, 304-312.	5.2	33
52	Role of the aldosterone-sensitive distal nephron in the sodium retention associated with liver cirrhosis. Kidney International, 2006, 69, 10-12.	5.2	4
53	17-β Estradiol attenuates streptozotocin-induced diabetes and regulates the expression of renal sodium transporters. Kidney International, 2006, 69, 471-480.	5.2	44
54	Sodium transporters in the distal nephron and disease implications. Current Hypertension Reports, 2006, 8, 158-165.	3.5	24

#	Article	IF	CITATIONS
55	Rosiglitazone Regulates ENaC and Na-K-2Cl Cotransporter (NKCC ₂) Abundance in the Obese Zucker Rat. American Journal of Nephrology, 2006, 26, 245-257.	3.1	36
56	Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. American Journal of Physiology - Renal Physiology, 2006, 290, F1055-F1064.	2.7	82
57	Lithium treatment and remodeling of the collecting duct. American Journal of Physiology - Renal Physiology, 2006, 291, F37-F38.	2.7	9
58	Aldosterone infusion with high-NaCl diet increases blood pressure in obese but not lean Zucker rats. American Journal of Physiology - Renal Physiology, 2006, 291, F597-F605.	2.7	36
59	Increased renal α-ENaC and NCC abundance and elevated blood pressure are independent of hyperaldosteronism in vasopressin escape. American Journal of Physiology - Renal Physiology, 2006, 291, F49-F57.	2.7	24
60	Insulin receptor localization and regulation in rat kidney. FASEB Journal, 2006, 20, A1169.	0.5	3
61	Metabolic, renal, and cardiovascular effects of selective estrogen receptor agonists. FASEB Journal, 2006, 20, A1169.	0.5	0
62	Sex differences in the renal and cardiovascular responses to aldosterone: role of nitric oxide. FASEB Journal, 2006, 20, A1194.	0.5	0
63	Acute insulin infusion effects on ENaC subunits in mice. FASEB Journal, 2006, 20, A1225.	0.5	0
64	Sex and Age Differences in Renal Ability to Conserve Water and Sodium in F344 x Brown Norway Rats. FASEB Journal, 2006, 20, A338.	0.5	0
65	Sex differences in blood pressure and kidney sodium transporters and channels in response to high salt diet in lean and obese Zucker rats. FASEB Journal, 2006, 20, A338.	0.5	2
66	Rosiglitazone induces renal cellular acidosis FASEB Journal, 2006, 20, A1223.	0.5	2
67	Regulation of the renal thiazide-sensitive Na-Cl cotransporter, blood pressure, and natriuresis in obese Zucker rats treated with rosiglitazone. American Journal of Physiology - Renal Physiology, 2005, 289, F442-F450.	2.7	51
68	Diabetic nephropathy is associated with decreasedcirculating estradiol levels and imbalance in the expression of renal estrogen receptors. Gender Medicine, 2005, 2, 227-237.	1.4	78
69	Targeted proteomics using immunoblotting technique for studying dysregulation of ion transporters in renal disorders. Expert Review of Proteomics, 2004, 1, 219-227.	3.0	5
70	Rosiglitazone Activates Renal Sodium- and Water-Reabsorptive Pathways and Lowers Blood Pressure in Normal Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 426-433.	2.5	128
71	Increased blood pressure, aldosterone activity, and regional differences in renal ENaC protein during vasopressin escape. American Journal of Physiology - Renal Physiology, 2004, 287, F1076-F1083.	2.7	42
72	Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. American Journal of Physiology - Renal Physiology, 2004, 287, F1204-F1212.	2.7	55

#	Article	IF	CITATIONS
73	Increased renal ENaC subunit and sodium transporter abundances in streptozotocin-induced type 1 diabetes. American Journal of Physiology - Renal Physiology, 2003, 285, F1125-F1137.	2.7	55
74	Proteomics and Sodium Transport. , 2003, 141, 124-141.		4
75	Chapter 6 Regulation of renal salt and water transporters during vasopressin escape. Progress in Brain Research, 2002, 139, 75-84.	1.4	13
76	Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Kidney International, 2002, 61, 2099-2110.	5.2	62
77	Regulation of the Abundance of Renal Sodium Transporters and Channels by Vasopressin. Experimental Neurology, 2001, 171, 227-234.	4.1	116
78	Increased renal Na-K-ATPase, NCC, and β-ENaC abundance in obese Zucker rats. American Journal of Physiology - Renal Physiology, 2001, 281, F639-F648.	2.7	89
79	Expression of salt and urea transporters in rat kidney during cisplatin-induced polyuria. Kidney International, 2001, 60, 2274-2282.	5.2	31
80	Regulation of Potassium Channel Kir 1.1 (ROMK) Abundance in the Thick Ascending Limb of Henle's Loop. Journal of the American Society of Nephrology: JASN, 2001, 12, 10-18.	6.1	54
81	Increased Abundance of Distal Sodium Transporters in Rat Kidney during Vasopressin Escape. Journal of the American Society of Nephrology: JASN, 2001, 12, 207-217.	6.1	60
82	Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. American Journal of Physiology - Renal Physiology, 2000, 279, F46-F53.	2.7	203
83	Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. Journal of Clinical Investigation, 2000, 106, 1361-1371.	8.2	106
84	Detection of Na+ Transporter Proteins in Urine. Journal of the American Society of Nephrology: JASN, 2000, 11, 2128-2132.	6.1	76
85	Temporal adjustment of the juxtaglomerular apparatus during sustained inhibition of proximal reabsorption. Journal of Clinical Investigation, 1999, 104, 1149-1158.	8.2	55
86	Kidney Aquaporin-2 Expression during Escape from Antidiuresis Is Not Related to Plasma or Tissue Osmolality. Journal of the American Society of Nephrology: JASN, 1999, 10, 2067-2075.	6.1	22
87	Regulation of Thick Ascending Limb Transport by Vasopressina. Journal of the American Society of Nephrology: JASN, 1999, 10, 628-634.	6.1	84
88	Regulation of Thick Ascending Limb Ion Transporter Abundance in Response to Altered Acid/Base Intake. Journal of the American Society of Nephrology: JASN, 1999, 10, 935-942.	6.1	93
89	Impaired aquaporin and urea transporter expression in rats with adriamycin-induced nephrotic syndrome11See Editorial by Berl, p 1418. Kidney International, 1998, 53, 1244-1253.	5.2	67
90	Concentrating defect in experimental nephrotic syndrome: Altered expression of aquaporins and thick ascending limb Na+ transporters. Kidney International, 1998, 54, 170-179.	5.2	105

#	Article	IF	CITATIONS
91	Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5450-5455.	7.1	182
92	Renal aquaporins. Kidney International, 1996, 49, 1712-1717.	5.2	140
93	Importance of kidney function and duration of exposure on aluminum accumulation in mature rats. Nutrition Research, 1994, 14, 577-586.	2.9	14
94	Aluminum retention by aged rats fed aluminum and treated with desferrioxamine. Toxicology Letters, 1994, 73, 249-257.	0.8	10
95	Tissue Aluminum Accumulation and Toxic Consequences in Rats Chronically Fed Aluminum with and without Citrate. Journal of Agricultural and Food Chemistry, 1994, 42, 2220-2224.	5.2	18
96	Dietary Citrate and Kidney Function Affect Aluminum, Zinc and Iron Utilization in Rats. Journal of Nutrition, 1991, 121, 1755-1762.	2.9	29