Jonathan M G Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776594/publications.pdf

Version: 2024-02-01

53 papers 3,862 citations

32 h-index 51 g-index

55 all docs 55 docs citations

55 times ranked 4197 citing authors

#	Article	IF	CITATIONS
1	Simultaneous Measurement of Single-Cell Mechanics and Cell-to-Materials Adhesion Using Fluidic Force Microscopy. Langmuir, 2022, 38, 620-628.	3.5	9
2	PCTAIRE1 promotes mitotic progression and resistance against antimitotic and apoptotic signals. Journal of Cell Science, 2022, 135, .	2.0	2
3	Dissecting the roles of Haspin and VRK1 in histone H3 phosphorylation during mitosis. Scientific Reports, 2022, 12, .	3.3	8
4	A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nature Communications, 2021, 12, 4322.	12.8	10
5	The Aurora B gradient sustains kinetochore stability in anaphase. Cell Reports, 2021, 37, 109818.	6.4	17
6	Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nature Communications, 2020, 11, 4534.	12.8	63
7	Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle, 2020, 19, 625-641.	2.6	19
8	Kinase inhibition profiles as a tool to identify kinases for specific phosphorylation sites. Nature Communications, 2020, 11, 1684.	12.8	22
9	Aneuploidy in Oocytes Is Prevented by Sustained CDK1 Activity through Degron Masking in Cyclin B1. Developmental Cell, 2019, 48, 672-684.e5.	7.0	39
10	CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. Journal of Cell Biology, 2019, 218, 1164-1181.	5.2	21
11	The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Scientific Reports, 2018, 8, 7898.	3.3	25
12	Mitotic Mysteries: The Case of HP1. Developmental Cell, 2016, 36, 477-478.	7.0	15
13	Polyoma small T antigen triggers cell death via mitotic catastrophe. Oncogene, 2015, 34, 2483-2492.	5.9	15
14	TD-60 links RalA GTPase function to the CPC in mitosis. Nature Communications, 2015, 6, 7678.	12.8	43
15	Poloâ€like kinaseâ€1 triggers histone phosphorylation by Haspin in mitosis. EMBO Reports, 2014, 15, 273-281.	4.5	64
16	Integrin $\hat{l}\pm\hat{El^2}$ 7: Molecular Features and Functional Significance in the Immune System. Advances in Experimental Medicine and Biology, 2014, 819, 97-110.	1.6	38
17	Chromosome Segregation: Learning to Let Go. Current Biology, 2013, 23, R883-R885.	3.9	3
18	Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends in Cell Biology, 2013, 23, 175-184.	7.9	158

#	Article	IF	CITATIONS
19	Nucleosome Assembly Proteins Get SET to Defeat the Guardian of Chromosome Cohesion. PLoS Genetics, 2013, 9, e1003829.	3.5	7
20	Molecular basis for phosphospecific recognition of histone H3 tails by Survivin paralogues at inner centromeres. Molecular Biology of the Cell, 2012, 23, 1457-1466.	2.1	53
21	Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. Journal of Cell Biology, 2012, 199, 251-268.	5.2	95
22	Structure–activity relationship study of beta-carboline derivatives as haspin kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2015-2019.	2.2	61
23	A Positive Feedback Loop Involving Haspin and Aurora B Promotes CPC Accumulation at Centromeres in Mitosis. Current Biology, 2011, 21, 1061-1069.	3.9	143
24	Perturbation of Mitosis through Inhibition of Histone Acetyltransferases: The Key to Ochratoxin A Toxicity and Carcinogenicity?. Toxicological Sciences, 2011, 122, 317-329.	3.1	50
25	Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma, 2010, 119, 137-147.	2.2	61
26	Structure–activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3491-3494.	2.2	53
27	A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO Journal, 2010, 29, 3967-3978.	7.8	87
28	Histone H3 Thr-3 Phosphorylation by Haspin Positions Aurora B at Centromeres in Mitosis. Science, 2010, 330, 231-235.	12.6	416
29	Structure-activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3491-4.	2.2	21
30	Studies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion. Journal of Cell Science, 2009, 122, 4168-4176.	2.0	52
31	Structure and functional characterization of the atypical human kinase haspin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20198-20203.	7.1	144
32	Shugoshin and PP2A: Collaborating to Keep Chromosomes Connected. Developmental Cell, 2009, 17, 303-305.	7.0	7
33	Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nature Cell Biology, 2008, 10, 53-60.	10.3	198
34	Identification of Small Molecule Inhibitors of the Mitotic Kinase Haspin by High-Throughput Screening Using a Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer Assay. Journal of Biomolecular Screening, 2008, 13, 1025-1034.	2.6	35
35	The Crystal Structure of Human E-cadherin Domains 1 and 2, and Comparison with other Cadherins in the Context of Adhesion Mechanism. Journal of Molecular Biology, 2007, 373, 401-411.	4.2	112
36	Regulation of Mitotic Chromosome Cohesion by Haspin and Aurora B. Developmental Cell, 2006, 11, 741-750.	7.0	199

#	Article	IF	CITATIONS
37	The Cadherin-11 Cytoplasmic Juxtamembrane Domain Promotes α-Catenin Turnover at Adherens Junctions and Intercellular Motility. Molecular Biology of the Cell, 2006, 17, 2366-2376.	2.1	32
38	Integrin $\hat{l}\pm6\hat{l}^2$ 4-erbB2 Complex Inhibits Haptotaxis by Up-regulating E-cadherin Cell-Cell Junctions in Keratinocytes. Journal of Biological Chemistry, 2005, 280, 8004-8015.	3.4	36
39	Haspin: A Mitotic Histone Kinase Required for Metaphase Chromosome Alignment. Cell Cycle, 2005, 4, 665-668.	2.6	64
40	The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes and Development, 2005, 19, 472-488.	5.9	316
41	Cadherin-11 Provides Specific Cellular Adhesion between Fibroblast-like Synoviocytes. Journal of Experimental Medicine, 2004, 200, 1673-1679.	8.5	142
42	Alpha E: Table I Journal of Experimental Medicine, 2002, 196, 873-875.	8.5	22
43	The Haspin gene: location in an intron of the Integrin $\hat{l}\pm E$ gene, associated transcription of an Integrin $\hat{l}\pm E$ -derived RNA and expression in diploid as well as haploid cells. Gene, 2001, 267, 55-69.	2.2	38
44	Haspin-like proteins: A new family of evolutionarily conserved putative eukaryotic protein kinases. Protein Science, 2001, 10, 1677-1684.	7.6	55
45	Integrin $\hat{l}\pm E(CD103)\hat{l}^2 7$ Mediates Adhesion to Intestinal Microvascular Endothelial Cell Lines Via an E-Cadherin-Independent Interaction. Journal of Immunology, 2001, 166, 3506-3514.	0.8	71
46	Layilin, a Novel Integral Membrane Protein, Is a Hyaluronan Receptor. Molecular Biology of the Cell, 2001, 12, 891-900.	2.1	129
47	T-lymphocyte–epithelial-cell interactions: integrin αE(CD103)β7, LEEP-CAM and chemokines. Current Opinion in Cell Biology, 2000, 12, 563-568.	5.4	145
48	The Role of \hat{l}_{\pm} and \hat{l}_{2} Chains in Ligand Recognition by \hat{l}_{2} 7 Integrins. Journal of Biological Chemistry, 2000, 275, 25652-25664.	3.4	36
49	Molecular Basis for Leukocyte Integrin αEβ7 Adhesion to Epithelial (E)-Cadherin. Journal of Experimental Medicine, 2000, 191, 1555-1567.	8.5	56
50	IQGAP1 and Calmodulin Modulate E-cadherin Function. Journal of Biological Chemistry, 1999, 274, 37885-37892.	3.4	129
51	The A-domain of integrin αEβ7 is involved in binding to E-cadherin. Biochemical Society Transactions, 1999, 27, A145-A145.	3.4	0
52	Direct and Regulated Interaction of Integrin $\hat{l}\pm\hat{El^2}$ 7 with E-Cadherin. Journal of Cell Biology, 1998, 140, 197-210.	5.2	214
53	Haspin. The AFCS-nature Molecule Pages, 0, , .	0.2	11