

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7765254/publications.pdf Version: 2024-02-01

WANG NU

#	Article	IF	CITATIONS
1	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	13.7	788
2	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	31.4	769
3	Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487.	13.7	675
4	Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. Journal of the American Chemical Society, 2014, 136, 15529-15532.	13.7	670
5	Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 16345-16351.	13.7	563
6	Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.	31.4	510
7	A–D–A small molecules for solution-processed organic photovoltaic cells. Chemical Communications, 2015, 51, 4936-4950.	4.1	188
8	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	21.0	159
9	Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells. Journal of Materials Chemistry A, 2015, 3, 4765-4776.	10.3	117
10	Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18973.	2.8	113
11	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	10.3	104
12	Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of the Relationship between the Molecular Structure and Photovoltaic Performance. Chemistry of Materials, 2015, 27, 6077-6084.	6.7	92
13	Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. Chemical Communications, 2016, 52, 465-468.	4.1	79
14	Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7247-7255.	5.5	70
15	A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.	3.6	54
16	Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Research, 2013, 6, 478-484.	10.4	53
17	A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. Chemical Communications, 2015, 51, 15268-15271.	4.1	48
18	Open-circuit voltage up to 1.07V for solution processed small molecule based organic solar cells. Organic Electronics, 2014, 15, 2285-2294.	2.6	32

Wang Ni

#	Article	IF	CITATIONS
19	A simple small molecule as the acceptor for fullerene-free organic solar cells. Science China Chemistry, 2017, 60, 366-369.	8.2	29
20	Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. Journal of Materials Chemistry C, 2015, 3, 12403-12409.	5.5	28
21	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	10.3	26
22	A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Science China Chemistry, 2015, 58, 339-346.	8.2	23
23	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	10.3	19
24	A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells. Science China Chemistry, 2017, 60, 552-560.	8.2	16
25	Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of Chemistry, 2015, 33, 852-858.	4.9	15
26	Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells. Dyes and Pigments, 2017, 141, 262-268.	3.7	11
27	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	3.6	11
28	Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current–voltage characteristics. Physical Chemistry Chemical Physics, 2015, 17, 19261-19267.	2.8	2