Carole Anne Goble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7764526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Packaging research artefacts with RO-Crate. Data Science, 2022, 5, 97-138.	0.9	52
2	Methods included. Communications of the ACM, 2022, 65, 54-63.	4.5	55
3	Ten simple rules for making a software tool workflow-ready. PLoS Computational Biology, 2022, 18, e1009823.	3.2	7
4	The Specimen Data Refinery: A Canonical Workflow Framework and FAIR Digital Object Approach to Speeding up Digital Mobilisation of Natural History Collections. Data Intelligence, 2022, 4, 320-341.	1.5	6
5	Selection of data sets for FAIRification in drug discovery and development: Which, why, and how?. Drug Discovery Today, 2022, 27, 2080-2085.	6.4	8
6	Identifiers.org: Compact Identifier services in the cloud. Bioinformatics, 2021, 37, 1781-1782.	4.1	5
7	ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen And Data. Lecture Notes in Computer Science, 2021, , 222-225.	1.3	3
8	ELIXIRâ€EXCELERATE: establishing Europe's data infrastructure for the life science research of the future. EMBO Journal, 2021, 40, e107409.	7.8	18
9	Perspectives on automated composition of workflows in the life sciences. F1000Research, 2021, 10, 897.	1.6	7
10	Exploring the Current Practices, Costs and Benefits of FAIR Implementation in Pharmaceutical Research and Development: A Qualitative Interview Study. Data Intelligence, 2021, 3, 507-527.	1.5	9
11	Correction to: ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen And Data. Lecture Notes in Computer Science, 2021, , C1-C1.	1.3	0
12	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	7.2	53
13	A Community Roadmap for Scientific Workflows Research and Development. , 2021, , .		14
14	FAIR Data Reuse – the Path through Data Citation. Data Intelligence, 2020, 2, 78-86.	1.5	33
15	Towards FAIR principles forÂresearchÂsoftware. Data Science, 2020, 3, 37-59.	0.9	144
16	FAIR Computational Workflows. Data Intelligence, 2020, 2, 108-121.	1.5	97
17	FAIR Principles: Interpretations and Implementation Considerations. Data Intelligence, 2020, 2, 10-29.	1.5	149
18	Sharing interoperable workflow provenance: A review of best practices and their practical application in CWLProv. GigaScience, 2019, 8, .	6.4	49

#	Article	IF	CITATIONS
19	BioExcel Building Blocks, a software library for interoperable biomolecular simulation workflows. Scientific Data, 2019, 6, 169.	5.3	35
20	Data Management in Computational Systems Biology: Exploring Standards, Tools, Databases, and Packaging Best Practices. Methods in Molecular Biology, 2019, 2049, 285-314.	0.9	3
21	Marine long-term biodiversity assessment suggests loss of rare species in the Skagerrak and Kattegat region. Marine Biodiversity, 2018, 48, 2165-2176.	1.0	12
22	Enabling precision medicine via standard communication of HTS provenance, analysis, and results. PLoS Biology, 2018, 16, e3000099.	5.6	29
23	LabelFlow Framework for Annotating Workflow Provenance. Informatics, 2018, 5, 11.	3.9	6
24	FAIRDOMHub: a repository and collaboration environment for sharing systems biology research. Nucleic Acids Research, 2017, 45, D404-D407.	14.5	98
25	Four simple recommendations to encourage best practices in research software. F1000Research, 2017, 6, 876.	1.6	88
26	Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action. F1000Research, 2017, 6, 1040.	1.6	8
27	Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data. PLoS Biology, 2017, 15, e2001414.	5.6	97
28	I'll take that to go: Big data bags and minimal identifiers for exchange of large, complex datasets. , 2016, , .		33
29	The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 2016, 3, 160018.	5.3	8,670
30	SYNBIOCHEM–a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 2016, 44, 675-677.	3.4	7
31	BioVeL: a virtual laboratory for data analysis and modelling in biodiversity science and ecology. BMC Ecology, 2016, 16, 49.	3.0	45
32	The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable. Interface Focus, 2016, 6, 20150103.	3.0	30
33	Natural Language Search Interfaces: Health Data Needs Single-Field Variable Search. Journal of Medical Internet Research, 2016, 18, e13.	4.3	3
34	The evolution of standards and data management practices in systems biology. Molecular Systems Biology, 2015, 11, 851.	7.2	35
35	Using a suite of ontologies for preserving workflow-centric research objects. Web Semantics, 2015, 32, 16-42.	2.9	94
36	SEEK: a systems biology data and model management platform. BMC Systems Biology, 2015, 9, 33.	3.0	75

#	Article	IF	CITATIONS
37	ReputationNet: Reputation-Based Service Recommendation for e-Science. IEEE Transactions on Services Computing, 2015, 8, 439-452.	4.6	12
38	Structuring research methods and data with the research object model: genomics workflows as a case study. Journal of Biomedical Semantics, 2014, 5, 41.	1.6	26
39	Software in reproducible research. , 2014, , .		6
40	Better Software, Better Research. IEEE Internet Computing, 2014, 18, 4-8.	3.3	44
41	Emerging Computational Methods for the Life Sciences Workshop 2012. Concurrency Computation Practice and Experience, 2014, 26, 1231-1233.	2.2	1
42	Distilling structure in Taverna scientific workflows: a refactoring approach. BMC Bioinformatics, 2014, 15, S12.	2.6	13
43	API-centric Linked Data integration: The Open PHACTS Discovery Platform case study. Web Semantics, 2014, 29, 12-18.	2.9	44
44	Common motifs in scientific workflows: An empirical analysis. Future Generation Computer Systems, 2014, 36, 338-351.	7.5	57
45	Applying linked data approaches to pharmacology: Architectural decisions and implementation. Semantic Web, 2014, 5, 101-113.	1.9	41
46	Meeting report from the fourth meeting of the Computational Modeling in Biology Network (COMBINE). Standards in Genomic Sciences, 2014, 9, 1285-1301.	1.5	21
47	Scientific Lenses to Support Multiple Views over Linked Chemistry Data. Lecture Notes in Computer Science, 2014, , 98-113.	1.3	16
48	A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control. Biodiversity Data Journal, 2014, 2, e4221.	0.8	49
49	DistillFlow. , 2014, , .		0
50	PAV ontology: provenance, authoring and versioning. Journal of Biomedical Semantics, 2013, 4, 37.	1.6	64
51	The Software Sustainability Institute: Changing Research Software Attitudes and Practices. Computing in Science and Engineering, 2013, 15, 74-80.	1.2	55
52	Small Is Beautiful: Summarizing Scientific Workflows Using Semantic Annotations. , 2013, , .		18
53	Why linked data is not enough for scientists. Future Generation Computer Systems, 2013, 29, 599-611.	7.5	230
54	The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Research, 2013, 41, W557-W561.	14.5	567

#	Article	IF	CITATIONS
55	Stealthy annotation of experimental biology by spreadsheets. Concurrency Computation Practice and Experience, 2013, 25, 467-480.	2.2	3
56	Semantic Data and Models Sharing in Systems Biology: The Just Enough Results Model and the SEEK Platform. Lecture Notes in Computer Science, 2013, , 212-227.	1.3	6
57	Incorporating Commercial and Private Data into an Open Linked Data Platform for Drug Discovery. Lecture Notes in Computer Science, 2013, , 65-80.	1.3	5
58	World Wide Web. , 2013, , 2356-2361.		0
59	Why workflows break — Understanding and combating decay in Taverna workflows. , 2012, , .		48
60	Toward interoperable bioscience data. Nature Genetics, 2012, 44, 121-126.	21.4	362
61	MIM: A Minimum Information Model vocabulary and framework for Scientific Linked Data. , 2012, , .		5
62	ReputationNet: A Reputation Engine to Enhance ServiceMap by Recommending Trusted Services. , 2012, , .		13
63	Common motifs in scientific workflows: An empirical analysis. , 2012, , .		18
64	RightField: Semantic enrichment of Systems Biology data using spreadsheets. , 2012, , .		1
65	Open PHACTS: semantic interoperability for drug discovery. Drug Discovery Today, 2012, 17, 1188-1198.	6.4	274
66	RightField: Scientific Knowledge Acquisition by Stealth through Ontology-Enabled Spreadsheets. Lecture Notes in Computer Science, 2012, , 438-441.	1.3	1
67	Opening new gateways to workflows for life scientists. Studies in Health Technology and Informatics, 2012, 175, 131-41.	0.3	5
68	Fostering Scientific Workflow Preservation through Discovery of Substitute Services. , 2011, , .		11
69	ServiceMap: Providing Map and GPS Assistance to Service Composition in Bioinformatics. , 2011, , .		20
70	The SEEK. Methods in Enzymology, 2011, 500, 629-655.	1.0	44
71	OneStop:JWS Online's access point to SBML,SBGN and MIRIAM compliant annotation. Nature Precedings, 2011, , .	0.1	0
72	Extending Semantic Provenance into the Web of Data. IEEE Internet Computing, 2011, 15, 40-48.	3.3	18

#	Article	IF	CITATIONS
73	Workflows to open provenance graphs, round-trip. Future Generation Computer Systems, 2011, 27, 812-819.	7.5	11
74	Quality, trust, and utility of scientific data on the web. , 2011, , .		25
75	Scientific Social Objects: The Social Objects and Multidimensional Network of the myExperiment Website. , 2011, , .		10
76	RightField: embedding ontology annotation in spreadsheets. Bioinformatics, 2011, 27, 2021-2022.	4.1	69
77	A comparison of using Taverna and BPEL in building scientific workflows: the case of caGrid. Concurrency Computation Practice and Experience, 2010, 22, 1098-1117.	2.2	13
78	Elements of a computational infrastructure for social simulation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3797-3812.	3.4	19
79	Community-driven computational biology with Debian Linux. BMC Bioinformatics, 2010, 11, S5.	2.6	42
80	Towards open science: the myExperiment approach. Concurrency Computation Practice and Experience, 2010, 22, 2335-2353.	2.2	25
81	A formal semantics for the Taverna 2 workflow model. Journal of Computer and System Sciences, 2010, 76, 490-508.	1.2	28
82	An ActOn-based semantic information service for Grids. Future Generation Computer Systems, 2010, 26, 324-336.	7.5	9
83	Research Objects: Towards Exchange and Reuse of Digital Knowledge. Nature Precedings, 2010, , .	0.1	105
84	Linking multiple workflow provenance traces for interoperable collaborative science. , 2010, , .		28
85	XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments. Genome Biology, 2010, 11, R27.	9.6	20
86	Functional Units: Abstractions for Web Service Annotations. , 2010, , .		5
87	ERGOT: A Semantic-Based System for Service Discovery in Distributed Infrastructures. , 2010, , .		25
88	The Evolution of myExperiment. , 2010, , .		11
89	Why Linked Data is Not Enough for Scientists. , 2010, , .		37
90	Supporting e-Science Using Semantic Web Technologies – The Semantic Grid. Annals of Information Systems, 2010, , 1-28.	0.5	1

#	Article	IF	CITATIONS
91	Taverna, Reloaded. Lecture Notes in Computer Science, 2010, , 471-481.	1.3	93
92	Janus: From Workflows to Semantic Provenance and Linked Open Data. Lecture Notes in Computer Science, 2010, , 129-141.	1.3	39
93	Open workflow infrastructure. , 2010, , .		1
94	Building Workflows that Traverse the Bioinformatics Data Landscape. , 2009, , 141-163.		0
95	BioCatalogue: A Curated Web Service Registry For The Life Science Community. Nature Precedings, 2009, , .	0.1	13
96	Combining DHTs and SONs for Semantic-Based Service Discovery. , 2009, , .		3
97	Benchmarking workflow discovery: a case study from bioinformatics. Concurrency Computation Practice and Experience, 2009, 21, 2052-2069.	2.2	8
98	The design and realisation of the Virtual Research Environment for social sharing of workflows. Future Generation Computer Systems, 2009, 25, 561-567.	7.5	407
99	Heterogeneous composition of models of computation. Future Generation Computer Systems, 2009, 25, 552-560.	7.5	44
100	The data playground: An intuitive workflow specification environment. Future Generation Computer Systems, 2009, 25, 453-459.	7.5	8
101	Software Design for Empowering Scientists. IEEE Software, 2009, 26, 88-95.	1.8	61
102	Scientific Workflows as Services in caGrid: A Taverna and gRAVI Approach. , 2009, , .		12
103	Medical image processing workflow support on the EGEE grid with taverna. , 2009, , .		10
104	Scientific Process Automation and Workflow Management. Chapman & Hall/CRC Computational Science, 2009, , .	0.5	44
105	Data Provenance in Scientific Workflows. , 2009, , 46-59.		1
106	Mining Taverna's semantic web of provenance. Concurrency Computation Practice and Experience, 2008, 20, 463-472.	2.2	85
107	In situ migration of handcrafted ontologies to reason-able forms. Data and Knowledge Engineering, 2008, 66, 147-162.	3.4	10
108	State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics, 2008, 41, 687-693.	4.3	244

4

#	Article	IF	CITATIONS
109	Metadata Management in the Taverna Workflow System. , 2008, , .		30
110	myExperiment: Defining the Social Virtual Research Environment. , 2008, , .		46
111	Data curation + process curation=data integration + science. Briefings in Bioinformatics, 2008, 9, 506-517.	6.5	53
112	Data Lineage Model for Taverna Workflows with Lightweight Annotation Requirements. Lecture Notes in Computer Science, 2008, , 17-30.	1.3	40
113	Workflow Discovery. International Journal of Web Services Research, 2008, 5, 32-58.	0.8	9
114	Re-Evaluating The Grid: The Social Life of Programs. , 2008, , 201-211.		0
115	A roadmap for caGrid, an enterprise Grid architecture for biomedical research. Studies in Health Technology and Informatics, 2008, 138, 224-37.	0.3	9
116	Composing Different Models of Computation in Kepler and Ptolemy II. Lecture Notes in Computer Science, 2007, , 182-190.	1.3	23
117	The Data Playground: An Intuitive Workflow Specification Environment. , 2007, , .		13
118	Using provenance to manage knowledge of In Silico experiments. Briefings in Bioinformatics, 2007, 8, 183-194.	6.5	31
119	myExperiment. , 2007, , .		78
120	Grid metadata management: Requirements and architecture. , 2007, , .		7
121	Requirements and Services for Metadata Management. IEEE Internet Computing, 2007, 11, 17-25.	3.3	17
122	Designing the myExperiment Virtual Research Environment for the Social Sharing of Workflows. , 2007, , .		52
123	Taverna Workflows: Syntax and Semantics. , 2007, , .		63
124	An ActOn-based semantic information service for EGEE. , 2007, , .		2
125	Evaluating DANTE. ACM Transactions on Computer-Human Interaction, 2007, 14, 14.	5.7	58

126 Grid 3.0: Services, semantics and society. , 2007, , .

#	Article	IF	CITATIONS
127	Recycling workflows and services through discovery and reuse. Concurrency Computation Practice and Experience, 2007, 19, 181-194.	2.2	19
128	Examining the Challenges of Scientific Workflows. Computer, 2007, 40, 24-32.	1.1	406
129	Building the Mobile Web: rediscovering accessibility?. Universal Access in the Information Society, 2007, 6, 219-220.	3.0	4
130	Knowledge Discovery for Biology with Taverna. , 2007, , 355-395.		12
131	Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community. , 2007, , 300-319.		51
132	<pre>\$^{extrm{small{my}}}\$ Grid and UTOPIA: An Integrated Approach to Enacting and Visualising in Silico Experiments in the Life Sciences., 2007,, 59-70.</pre>		5
133	Metadata Management in S-OGSA. Lecture Notes in Computer Science, 2007, , 712-719.	1.3	0
134	Taverna: a tool for building and running workflows of services. Nucleic Acids Research, 2006, 34, W729-W732.	14.5	758
135	FAME: Adding Multi-Level Authentication to Shibboleth. , 2006, , .		5
136	Workflow discovery: the problem, a case study from e-Science and a graph-based solution. , 2006, , .		46
137	An overview of S-OGSA: A Reference Semantic Grid Architecture. Web Semantics, 2006, 4, 102-115.	2.9	69
138	Taverna: lessons in creating a workflow environment for the life sciences. Concurrency Computation Practice and Experience, 2006, 18, 1067-1100.	2.2	485
139	e-Science and the Semantic Web: A Symbiotic Relationship. Lecture Notes in Computer Science, 2006, , 1-12.	1.3	6
140	An Identity Crisis in the Life Sciences. Lecture Notes in Computer Science, 2006, , 254-269.	1.3	14
141	Guest editors' introduction to the special section on scientific workflows. SIGMOD Record, 2005, 34, 3-4.	1.2	49
142	Learning domain ontologies for semantic Web service descriptions. Web Semantics, 2005, 3, 340-365.	2.9	71
143	SEMANTICS-ASSISTED PROBLEM SOLVING ON THE SEMANTIC GRID. Computational Intelligence, 2005, 21, 157-176.	3.2	26

#	Article	IF	CITATIONS
145	Learning domain ontologies for Web service descriptions. , 2005, , .		72
146	ODESGS framework, knowledge-based markup for semantic grid services. , 2005, , .		1
147	Augmenting the mobility of profoundly blind Web travellers. New Review of Hypermedia and Multimedia, 2005, 11, 103-128.	1.1	11
148	Feta: A Light-Weight Architecture for User Oriented Semantic Service Discovery. Lecture Notes in Computer Science, 2005, , 17-31.	1.3	64
149	The Semantic Web and Knowledge Grids. Drug Discovery Today: Technologies, 2005, 2, 225-233.	4.0	10
150	Seven Bottlenecks to Workflow Reuse and Repurposing. Lecture Notes in Computer Science, 2005, , 323-337.	1.3	57
151	Pedro Ontology Services: A Framework for Rapid Ontology Markup. Lecture Notes in Computer Science, 2005, , 578-591.	1.3	4
152	Semantic web applications to e-science in silico experiments. , 2004, , .		4
153	DANTE. , 2004, , .		21
154	The Montagues and the Capulets. Comparative and Functional Genomics, 2004, 5, 623-632.	2.0	9
155	A short study on the success of the Gene Ontology. Web Semantics, 2004, 1, 235-240.	2.9	61
156	Using Semantic Web Technologies for Representing E-science Provenance. Lecture Notes in Computer Science, 2004, , 92-106.	1.3	83
157	Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt. Lecture Notes in Computer Science, 2004, , 350-364.	1.3	55
158	Carole Goble discusses the impact of semantic technologies on the life sciences. Drug Discovery Today Biosilico, 2004, 2, 4-6.	0.7	2
159	myGrid and the drug discovery process. Drug Discovery Today Biosilico, 2004, 2, 140-148.	0.7	30
160	Screen Readers Cannot See. Lecture Notes in Computer Science, 2004, , 445-458.	1.3	23
161	Semantically Linking and Browsing Provenance Logs for E-science. Lecture Notes in Computer Science, 2004, , 158-176.	1.3	41
162	Semantic Web Based Content Enrichment and Knowledge Reuse in E-science. Lecture Notes in Computer Science, 2004, , 654-669.	1.3	7

#	Article	IF	CITATIONS
163	Building Ontologies in DAML + OIL. Comparative and Functional Genomics, 2003, 4, 133-141.	2.0	17
164	Sentinel: towards an ambient mobility network. Disability and Rehabilitation, 2003, 25, 940-948.	1.8	5
165	A SUITE OF DAML+OIL ONTOLOGIES TO DESCRIBE BIOINFORMATICS WEB SERVICES AND DATA. International Journal of Cooperative Information Systems, 2003, 12, 197-224.	0.8	126
166	A foundation for tool based mobility support for visually impaired web users. , 2003, , .		34
167	Towards a Knowledge-Based Approach to Semantic Service Composition. Lecture Notes in Computer Science, 2003, , 319-334.	1.3	67
168	The Grid Needs You! Enlist Now. Lecture Notes in Computer Science, 2003, , 589-600.	1.3	9
169	The Grid. SIGMOD Record, 2002, 31, 65-70.	1.2	49
170	Report on the EDBT'02 panel on scientific data integration. SIGMOD Record, 2002, 31, 107-112.	1.2	10
171	Report on the 18 th British National Conference on Databases (BNCOD). SIGMOD Record, 2002, 31, 109-112.	1.2	32
172	OILing the way to machine understandable bioinformatics resources. IEEE Transactions on Information Technology in Biomedicine, 2002, 6, 129-134.	3.2	21
173	Building a bioinformatics ontology using OIL. IEEE Transactions on Information Technology in Biomedicine, 2002, 6, 135-141.	3.2	44
174	Thesaurus construction through knowledge representation. Data and Knowledge Engineering, 2001, 37, 25-45.	3.4	22
175	The Low Down on e-Science and Grids for Biology. Comparative and Functional Genomics, 2001, 2, 365-370.	2.0	11
176	A classification of tasks in bioinformatics. Bioinformatics, 2001, 17, 180-188.	4.1	123
177	Conceptual linking. , 2001, , .		94
178	The travails of visually impaired web travellers. , 2000, , .		55
179	Classification Based Navigation and Retrieval for Picture Archives. , 1999, , 291-310.		5
180	TourisT. , 1998, , .		9

#	Article	IF	CITATIONS
181	Kaleidoquery. , 1998, , .		26
182	Data management challenges for artificial intelligence in plant and agricultural research. F1000Research, 0, 10, 324.	1.6	7
183	Landscape Analysis for the Specimen Data Refinery. Research Ideas and Outcomes, 0, 6, .	1.0	15
184	Api-Centric Linked Data Integration: The Open Phacts Discovery Platform Case Study. SSRN Electronic Journal, 0, , .	0.4	3
185	Using a Suite of Ontologies for Preserving Workflow-Centric Research Objects. SSRN Electronic Journal, 0, , .	0.4	0