John Steel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7763525/publications.pdf Version: 2024-02-01

IOHN STEEL

#	Article	lF	CITATIONS
1	Quantitative Approach To Assess Influenza A Virus Fitness and Transmission in Guinea Pigs. Journal of Virology, 2021, 95, .	3.4	11
2	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
3	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
4	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
5	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
6	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
7	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
8	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
9	Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nature Communications, 2019, 10, 3526.	12.8	74
10	Dysregulation of M segment gene expression contributes to influenza A virus host restriction. PLoS Pathogens, 2019, 15, e1007892.	4.7	18
11	H5N8 and H7N9 packaging signals constrain HA reassortment with a seasonal H3N2 influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4611-4618.	7.1	22
12	Host Cell Copper Transporters CTR1 and ATP7A are important for Influenza A virus replication. Virology Journal, 2017, 14, 11.	3.4	36
13	Heterologous Packaging Signals on Segment 4, but Not Segment 6 or Segment 8, Limit Influenza A Virus Reassortment. Journal of Virology, 2017, 91, .	3.4	24
14	Drivers of airborne human-to-human pathogen transmission. Current Opinion in Virology, 2017, 22, 22-29.	5.4	81
15	High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan. Vector-Borne and Zoonotic Diseases, 2017, 17, 155-159.	1.5	38
16	Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny. Journal of Virology, 2017, 91, .	3.4	42
17	Influenza Virus Reassortment Is Enhanced by Semi-infectious Particles but Can Be Suppressed by Defective Interfering Particles. PLoS Pathogens, 2015, 11, e1005204.	4.7	64
18	Influenza A Virus Coinfection through Transmission Can Support High Levels of Reassortment. Journal of Virology, 2015, 89, 8453-8461.	3.4	35

John Steel

#	Article	IF	CITATIONS
19	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	2.9	4
20	A paradigm shift in vaccine production for pandemic influenza. Annals of Translational Medicine, 2015, 3, 165.	1.7	2
21	Filament-Producing Mutants of Influenza A/Puerto Rico/8/1934 (H1N1) Virus Have Higher Neuraminidase Activities than the Spherical Wild-Type. PLoS ONE, 2014, 9, e112462.	2.5	21
22	The M Segment of the 2009 Pandemic Influenza Virus Confers Increased Neuraminidase Activity, Filamentous Morphology, and Efficient Contact Transmissibility to A/Puerto Rico/8/1934-Based Reassortant Viruses. Journal of Virology, 2014, 88, 3802-3814.	3.4	99
23	Roles of Humidity and Temperature in Shaping Influenza Seasonality. Journal of Virology, 2014, 88, 7692-7695.	3.4	384
24	Intrahost Dynamics of Influenza Virus Reassortment. Journal of Virology, 2014, 88, 7485-7492.	3.4	45
25	Mutations to PB2 and NP Proteins of an Avian Influenza Virus Combine To Confer Efficient Growth in Primary Human Respiratory Cells. Journal of Virology, 2014, 88, 13436-13446.	3.4	27
26	Influenza A Virus Reassortment. Current Topics in Microbiology and Immunology, 2014, 385, 377-401.	1.1	110
27	Transmission in the Guinea Pig Model. Current Topics in Microbiology and Immunology, 2014, 385, 157-183.	1.1	30
28	Residue 41 of the Eurasian Avian-Like Swine Influenza A Virus Matrix Protein Modulates Virion Filament Length and Efficiency of Contact Transmission. Journal of Virology, 2014, 88, 7569-7577.	3.4	31
29	Spherical Influenza Viruses Have a Fitness Advantage in Embryonated Eggs, while Filament-Producing Strains Are Selected <i>In Vivo</i> . Journal of Virology, 2013, 87, 13343-13353.	3.4	66
30	H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids. Journal of General Virology, 2013, 94, 2417-2423.	2.9	65
31	Transmission of a 2009 Pandemic Influenza Virus Shows a Sensitivity to Temperature and Humidity Similar to That of an H3N2 Seasonal Strain. Journal of Virology, 2011, 85, 1400-1402.	3.4	123
32	The DBA.2 Mouse Is Susceptible to Disease following Infection with a Broad, but Limited, Range of Influenza A and B Viruses. Journal of Virology, 2011, 85, 12825-12829.	3.4	82
33	Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 2010, 84, 11802-11813.	3.4	197
34	Transmission of Pandemic H1N1 Influenza Virus and Impact of Prior Exposure to Seasonal Strains or Interferon Treatment. Journal of Virology, 2010, 84, 21-26.	3.4	118
35	Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain. MBio, 2010, 1,	4.1	460
36	Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza. Journal of Virology, 2009, 83, 1742-1753.	3.4	217

JOHN STEEL

#	Article	IF	CITATIONS
37	Transmission of Influenza Virus in a Mammalian Host Is Increased by PB2 Amino Acids 627K or 627E/701N. PLoS Pathogens, 2009, 5, e1000252.	4.7	497
38	A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus. Vaccine, 2008, 26, 522-531.	3.8	51
39	Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLoS Pathogens, 2007, 3, e151.	4.7	1,259