
William P Malachowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7762690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Enantioselective Birch–Heck Sequence for the Synthesis of Phenanthridinone Derivatives with an All-Carbon Quaternary Stereocenter. Journal of Organic Chemistry, 2022, 87, 1154-1172.	3.2	1
2	Palladium-catalyzed mono-Î ³ -arylation of 7-methoxy-4-methylcoumarin. Tetrahedron Letters, 2019, 60, 151057.	1.4	6
3	Diaryl hydroxylamines as pan or dual inhibitors of indoleamine 2,3-dioxygenase-1, indoleamine 2,3-dioxygenase-2 and tryptophan dioxygenase. European Journal of Medicinal Chemistry, 2019, 162, 455-464.	5.5	37
4	Catalytic Enantioselective Birch–Heck Sequence for the Synthesis of Tricyclic Structures with All-Carbon Quaternary Stereocenters. Organic Letters, 2018, 20, 1740-1743.	4.6	10
5	Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer. International Review of Cell and Molecular Biology, 2018, 336, 175-203.	3.2	204
6	Proton Spin‣attice Relaxation in Organic Molecular Solids: Polymorphism and the Dependence on Sample Preparation. ChemPhysChem, 2018, 19, 2423-2436.	2.1	3
7	Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation. Solid State Nuclear Magnetic Resonance, 2017, 85-86, 1-11.	2.3	0
8	Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Research, 2017, 77, 6795-6811.	0.9	433
9	O-alkylhydroxylamines as rationally-designed mechanism-based inhibitors of indoleamine 2,3-dioxygenase-1. European Journal of Medicinal Chemistry, 2016, 108, 564-576.	5.5	33
10	The enantioselective construction of tetracyclic diterpene skeletons with Friedel–Crafts alkylation and palladium-catalyzed cycloalkenylation reactions. Organic and Biomolecular Chemistry, 2015, 13, 2726-2744.	2.8	5
11	The first report of Lewis acid reagents in the intramolecular Rauhut–Currier reaction. Tetrahedron Letters, 2015, 56, 6073-6076.	1.4	6
12	Enantioselective synthesis of decalin structures with all-carbon quaternary centers via one-pot sequential Cope/Rauhut–Currier reaction. Tetrahedron Letters, 2014, 55, 4616-4618.	1.4	10
13	The Tumor-Selective Cytotoxic Agent β-Lapachone is a Potent Inhibitor of IDO1. International Journal of Tryptophan Research, 2013, 6, IJTR.S12094.	2.3	26
14	Enantioselective synthesis of bicarbocyclic structures with an all-carbon quaternary stereocenter through sequential cross metathesis and intramolecular Rauhut–Currier reaction. Tetrahedron Letters, 2010, 51, 2636-2638.	1.4	25
15	A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene, 2008, 27, 2851-2857.	5.9	154
16	Structure Based Development of Phenylimidazole-Derived Inhibitors of Indoleamine 2,3-Dioxygenase. Journal of Medicinal Chemistry, 2008, 51, 4968-4977.	6.4	148
17	Indoleamine 2,3-Dioxygenase Is the Anticancer Target for a Novel Series of Potent Naphthoquinone-Based Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 1706-1718.	6.4	151
18	Exploration of the Enantioselective Birchâ^'Cope Sequence for the Synthesis of Carbocyclic Quaternary Stereocenters. Journal of Organic Chemistry, 2007, 72, 930-937.	3.2	20

#	Article	IF	CITATIONS
19	The Enantioselective Synthesis of (â^')-Lycoramine with the Birchâ^'Cope Sequence. Journal of Organic Chemistry, 2007, 72, 6792-6796.	3.2	40
20	Structureâ^'Activity Study of Brassinin Derivatives as Indoleamine 2,3-Dioxygenase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 684-692.	6.4	161
21	The Enantioselective Birchâ^'Cope Sequence for the Synthesis of Carbocyclic Quaternary Stereocenters. Application to the Synthesis of (+)-Mesembrine. Organic Letters, 2006, 8, 4007-4010.	4.6	37
22	A general strategy for the synthesis of azapeptidomimetic lactams. Tetrahedron, 2005, 61, 10277-10284.	1.9	23
23	Sequential Birch Reduction—Allylation and Cope Rearrangement of o-Anisic Acid Derivatives ChemInform, 2005, 36, no.	0.0	0
24	Indoleamine 2,3-dioxygenase in cancer: targeting pathological immune tolerance with small-molecule inhibitors. Expert Opinion on Therapeutic Targets, 2005, 9, 831-849.	3.4	100
25	Sequential Birch reduction–allylation and Cope rearrangement of o-anisic acid derivatives. Tetrahedron Letters, 2004, 45, 8183-8185.	1.4	8
26	The Synthesis of Azapeptidomimetic β-Lactam Molecules as Potential Protease Inhibitors. Journal of Organic Chemistry, 2002, 67, 8962-8969.	3.2	33
27	Asymmetric Total Synthesis of (+)-Apovincamine and a Formal Synthesis of (+)-Vincamine. Demonstration of a Practical "Asymmetric Linkage―between Aromatic Carboxylic Acids and Chiral Acyclic Substrates. Journal of Organic Chemistry, 1997, 62, 1223-1229.	3.2	42
28	The Chemistry of Phosphapeptides: Formation of Functionalized Phosphonochloridates under Mild Conditions and Their Reaction with Alcohols and Amines. Journal of Organic Chemistry, 1994, 59, 7616-7624.	3.2	64
29	The Chemistry of Phosphapeptides: Investigations on the Synthesis of Phosphonamidate, Phosphonate, and Phosphinate Analogs of Glutamylgammaglutamate. Journal of Organic Chemistry, 1994, 59, 7625-7634	3.2	73