Yanchun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7762279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy and Environmental Science, 2015, 8, 3192-3197.	30.8	269
2	A structurally simple perylene dye with ethynylbenzothiadiazole-benzoic acid as the electron acceptor achieves an over 10% power conversion efficiency. Energy and Environmental Science, 2015, 8, 1438-1442.	30.8	85
3	Unlocking the effects of ancillary electron-donors on light absorption and charge recombination in phenanthrocarbazole dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 519-528.	10.3	31
4	Preliminary stereochemical investigation of the Atherton–Todd-type reaction between valine hydrospirophosphorane and phenols. Tetrahedron Letters, 2012, 53, 6302-6305.	1.4	30
5	Unexpected Insertion of CO2 into the Pentacoordinate P–N Bond: Atherton–Todd-Type Reaction of Hydrospirophosphorane with Amines. Journal of Organic Chemistry, 2013, 78, 11283-11293.	3.2	25
6	Fragmentation of deprotonated cyclic dipeptides by electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2009, 44, 1188-1194.	1.6	15
7	Fragmentation studies of sartans by electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2017, 52, 591-596.	1.6	10
8	Investigation of the Stereochemical Mechanism of the Nucleophilic Substitution Reaction at Pentacoordinate Phosphorus of Spirophosphorane. Journal of Organic Chemistry, 2021, 86, 4512-4531.	3.2	9
9	The ³ <i>J</i> _{CCNP} Coupling Constants of Pentacoordinate Spirophosphorane Derivatives: As a Method to Assign Relative Configuration. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 925-931.	1.6	8
10	Synthesis and Characterization of New Pyrospirophosphoranes Containing a P-O-P Bond by the Atherton-Todd Reaction. Heteroatom Chemistry, 2015, 26, 168-174.	0.7	8
11	Fragmentation studies of pentacoordinated bisaminoacylspirophosphoranes by negative electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2011, 46, 352-358.	1.6	7
12	The investigation on the N H reactivity of pentacoordinate spirophosphoranes by H/D exchange and NMR experiments. Tetrahedron Letters, 2018, 59, 3833-3838.	1.4	6
13	I2-mediated and direct synthesis of 3-phenoxy imidazo heterocycles. Tetrahedron, 2019, 75, 1481-1491.	1.9	5
14	Application of pentacoordinated spirophosphorane as a new organocatalyst for the Michael addition reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 936-947.	1.6	5
15	The investigation of substituent effects on the fragmentation pathways of pentacoordinated phenoxyspirophosphoranes by <scp>ESlâ€MSⁿ</scp> . Journal of Mass Spectrometry, 2018, 53, 314-322.	1.6	3
16	Investigation of Hydrophosphorylation Reaction of Pentacoordinate Hydrospirophosphorane and Electronâ€Deficient Alkenes Catalyzed by Organic Phosphine. Asian Journal of Organic Chemistry, 2021, 10, 3028-3033.	2.7	3
17	Electrospray ionization collision induced dissociation of thieno[3,2-d]pyrimidine derivatives. International Journal of Mass Spectrometry, 2020, 457, 116411.	1.5	1
18	Pentacoordinated spirophosphoranide as Lewis base to activate CO2 combining with alkyl halide under mild conditions. Tetrahedron, 2022, , 132777.	1.9	1

#	Article	IF	CITATIONS
19	H ₂ O ₂ â€Promoted Inter―and Intramolecular Câ^'N Bond Formation: Synthesis of Quinazoline Derivatives. ChemistrySelect, 2022, 7, .	1.5	1
20	Synthesis and evaluation of photophysical properties of Câ€3 halogenated derivatives of 2â€phenylimidazo[1,2― <i>a</i>]pyridine. Chinese Journal of Chemistry, 0, , .	4.9	1
21	Gasâ€phase fragmentation of protonated 3â€phenoxy imidazo[1,2â€a] pyridines using tandem mass spectrometry and computational chemistry. Journal of Mass Spectrometry, 2021, 56, e4794.	1.6	Ο