
## Marjolein H Willemsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7761829/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Expanding the genotype and phenotype spectrum of SYT1-associated neurodevelopmental disorder.<br>Genetics in Medicine, 2022, 24, 880-893.                                                                                                                                        | 2.4  | 14        |
| 2  | Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genetics in<br>Medicine, 2022, 24, 1283-1296.                                                                                                                                           | 2.4  | 9         |
| 3  | A Patient with Moderate Intellectual Disability and 49, XXXYY Karyotype. International Journal of General Medicine, 2022, Volume 15, 2799-2806.                                                                                                                                  | 1.8  | 3         |
| 4  | Loss-of-function variants in SRRM2 cause a neurodevelopmental disorder. Genetics in Medicine, 2022, 24, 1774-1780.                                                                                                                                                               | 2.4  | 16        |
| 5  | Human <i>KCNQ5</i> de novo mutations underlie epilepsy and intellectual disability. Journal of Neurophysiology, 2022, 128, 40-61.                                                                                                                                                | 1.8  | 8         |
| 6  | Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Molecular Psychiatry, 2021, 26, 2013-2024.                                                                                                                   | 7.9  | 43        |
| 7  | Further evidence for <i>de novo</i> variants in <i>SYNCRIP</i> as the cause of a neurodevelopmental disorder. Human Mutation, 2021, 42, 1094-1100.                                                                                                                               | 2.5  | 9         |
| 8  | Expanding the phenotype of <scp><i>ASXL3</i></scp> â€related syndrome: A comprehensive description of 45 unpublished individuals with inherited and de novo pathogenic variants in <scp><i>ASXL3</i></scp> . American Journal of Medical Genetics, Part A, 2021, 185, 3446-3458. | 1.2  | 12        |
| 9  | Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genetics in Medicine, 2021, 23, 2122-2137.                                                                                                                                                     | 2.4  | 16        |
| 10 | Germline AGO2 mutations impair RNA interference and human neurological development. Nature Communications, 2020, 11, 5797.                                                                                                                                                       | 12.8 | 43        |
| 11 | <p>A de novo <em>CTNNB1</em> Novel Splice Variant in an Adult Female with Severe<br/>Intellectual Disability</p> . International Medical Case Reports Journal, 2020, Volume 13, 487-492.                                                                                         | 0.8  | 8         |
| 12 | Damaging de novo missense variants in <i>EEF1A2</i> lead to a developmental and degenerative epilepticâ€dyskinetic encephalopathy. Human Mutation, 2020, 41, 1263-1279.                                                                                                          | 2.5  | 24        |
| 13 | Epilepsy phenotype in individuals with chromosomal duplication encompassing <i>FGF12</i> . Epilepsia Open, 2020, 5, 301-306.                                                                                                                                                     | 2.4  | 7         |
| 14 | Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.                                                                                                                                 | 12.8 | 43        |
| 15 | Diagnostic exome sequencing in 100 consecutive patients with both epilepsy and intellectual disability.<br>Epilepsia, 2019, 60, 155-164.                                                                                                                                         | 5.1  | 65        |
| 16 | De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity.<br>European Journal of Human Genetics, 2018, 26, 220-229.                                                                                                                       | 2.8  | 47        |
| 17 | <i>STAG1</i> mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. Journal of Medical Genetics, 2017, 54, 479-488.                                                                                                                | 3.2  | 35        |
| 18 | Adaptive and maladaptive functioning in Kleefstra syndrome compared to other rare genetic disorders with intellectual disabilities. American Journal of Medical Genetics, Part A, 2017, 173, 1821-1830.                                                                          | 1.2  | 31        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual<br>Disability Syndrome. American Journal of Human Genetics, 2017, 100, 650-658.                                                      | 6.2  | 56        |
| 20 | Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genetics, 2017, 13, e1006864.                                                          | 3.5  | 116       |
| 21 | B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal<br>a lack of genotype–phenotype associations in the muscular dystrophy-dystroglycanopathies. Genome<br>Medicine, 2017, 9, 118. | 8.2  | 13        |
| 22 | Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nature Genetics, 2016, 48, 877-887.                             | 21.4 | 67        |
| 23 | Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nature<br>Neuroscience, 2016, 19, 1194-1196.                                                                                           | 14.8 | 407       |
| 24 | Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders.<br>American Journal of Human Genetics, 2016, 98, 541-552.                                                                             | 6.2  | 132       |
| 25 | The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. European Journal of Human Genetics, 2016, 24, 652-659.                                           | 2.8  | 108       |
| 26 | A de novo microdeletion in NRXN1 in a Dutch patient with mild intellectual disability, microcephaly and gonadal dysgenesis. Genetical Research, 2015, 97, e19.                                                                     | 0.9  | 0         |
| 27 | De novo gain-of-function and loss-of-function mutations of <i>SCN8A</i> in patients with intellectual disabilities and epilepsy. Journal of Medical Genetics, 2015, 52, 330-337.                                                   | 3.2  | 124       |
| 28 | Homozygous SLC6A17 Mutations Cause Autosomal-Recessive Intellectual Disability with Progressive<br>Tremor, Speech Impairment, and Behavioral Problems. American Journal of Human Genetics, 2015, 96,<br>386-396.                   | 6.2  | 27        |
| 29 | Further delineation of the KBG syndrome phenotype caused by ANKRD11 aberrations. European Journal of Human Genetics, 2015, 23, 1176-1185.                                                                                          | 2.8  | 67        |
| 30 | Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity. Genetics in Medicine, 2015, 17, 460-466.                                                                              | 2.4  | 45        |
| 31 | De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Human Genetics, 2015, 134, 97-109.                                            | 3.8  | 93        |
| 32 | Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features.<br>Journal of Clinical Investigation, 2014, 124, 1468-1482.                                                                       | 8.2  | 110       |
| 33 | A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nature Genetics, 2014, 46, 380-384.                                                                                                                         | 21.4 | 293       |
| 34 | A complex microcephaly syndrome in a Pakistani family associated with a novel missense mutation in RBBP8 and a heterozygous deletion in NRXN1. Gene, 2014, 538, 30-35.                                                             | 2.2  | 11        |
| 35 | Involvement of the kinesin family members <i>KIF4A</i> and <i>KIF5C</i> in intellectual disability and synaptic function. Journal of Medical Genetics, 2014, 51, 487-494.                                                          | 3.2  | 90        |
| 36 | Genome sequencing identifies major causes of severe intellectual disability. Nature, 2014, 511, 344-347.                                                                                                                           | 27.8 | 996       |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | <i>GATAD2B</i> loss-of-function mutations cause a recognisable syndrome with intellectual disability<br>and are associated with learning deficits and synaptic undergrowth in <i>Drosophila</i> . Journal of<br>Medical Genetics, 2013, 50, 507-514. | 3.2  | 63        |
| 38 | Mutations in <i>DYNC1H1</i> cause severe intellectual disability with neuronal migration defects.<br>Journal of Medical Genetics, 2012, 49, 179-183.                                                                                                 | 3.2  | 151       |
| 39 | Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. New England Journal of Medicine, 2012, 367, 1921-1929.                                                                                                                   | 27.0 | 1,367     |
| 40 | Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. European Journal of Medical Genetics, 2012, 55, 586-598.               | 1.3  | 16        |
| 41 | Further molecular and clinical delineation of the Wisconsin syndrome phenotype associated with interstitial 3q24q25 deletions. American Journal of Medical Genetics, Part A, 2011, 155, 106-112.                                                     | 1.2  | 6         |
| 42 | Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. Journal of Medical Genetics, 2011, 48, 810-818.                                                                                             | 3.2  | 146       |
| 43 | Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. European Journal of Human Genetics, 2010, 18, 429-435.                                             | 2.8  | 99        |
| 44 | Clinical and molecular characterization of two patients with a 6.75Mb overlapping deletion in 8p12p21<br>with two candidate loci for congenital heart defects. European Journal of Medical Genetics, 2009, 52,<br>134-139.                           | 1.3  | 11        |
| 45 | Females with PDHA1 gene mutations: A diagnostic challenge. Mitochondrion, 2006, 6, 155-159.                                                                                                                                                          | 3.4  | 27        |