
Johann Far

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759476/publications.pdf Version: 2024-02-01

ΙΟΗΛΝΝ ΕΛΡ

#	ARTICLE	IF	CITATIONS
1	Geometric Analysis of Shapes in Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 273-283.	2.8	3
2	Label-Free Higher Order Structure and Dynamic Investigation Method of Proteins in Solution Using an Enzymatic Reactor Coupled to Electrospray High-Resolution Mass Spectrometry Detection. Journal of the American Society for Mass Spectrometry, 2022, 33, 284-295.	2.8	0
3	Cyclic Peptide Protomer Detection in the Gas Phase: Impact on CCS Measurement and Fragmentation Patterns. Journal of the American Society for Mass Spectrometry, 2022, 33, 851-858.	2.8	2
4	FT-ICR Mass Spectrometry Imaging at Extreme Mass Resolving Power Using a Dynamically Harmonized ICR Cell with 11‰ or 21‰ Detection. Analytical Chemistry, 2022, 94, 9316-9326.	6.5	10
5	Using Ion Mobility–Mass Spectrometry to Extract Physicochemical Enthalpic and Entropic Contributions from Synthetic Polymers. Journal of the American Society for Mass Spectrometry, 2021, 32, 330-339.	2.8	3
6	Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Analytical and Bioanalytical Chemistry, 2021, 413, 2821-2830.	3.7	15
7	Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Progress in Lipid Research, 2021, 83, 101114.	11.6	19
8	Mass shift in mass spectrometry imaging: comprehensive analysis and practical corrective workflow. Analytical and Bioanalytical Chemistry, 2021, 413, 2831-2844.	3.7	7
9	Combination of Capillary Zone Electrophoresis-Mass Spectrometry, Ion Mobility-Mass Spectrometry, and Theoretical Calculations for Cysteine Connectivity Identification in Peptides Bearing Two Intramolecular Disulfide Bonds. Analytical Chemistry, 2020, 92, 2425-2434.	6.5	10
10	Sodium Coordination and Protonation of Poly(ethoxy phosphate) Chains in the Gas Phase Probed by Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 633-641.	2.8	4
11	Can IM-MS Collision Cross Sections of Biomolecules Be Rationalized Using Collision Cross-Section Trends of Polydisperse Synthetic Homopolymers?. Journal of the American Society for Mass Spectrometry, 2020, 31, 990-995.	2.8	6
12	A Mechanistic Study of Protonated Aniline to Protonated Phenol Substitution Considering Tautomerization by Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2238-2249.	2.8	13
13	Towards the use of ion mobility mass spectrometry derived collision cross section as a screening approach for unambiguous identification of targeted pesticides in food. Rapid Communications in Mass Spectrometry, 2019, 33, 34-48.	1.5	33
14	Recommendations for reporting ion mobility Mass Spectrometry measurements. Mass Spectrometry Reviews, 2019, 38, 291-320.	5.4	315
15	<i>Bacillus licheniformis</i> peptidoglycan characterization by CZE–MS: Assessment with the benchmark RPâ€HPLCâ€MS method. Electrophoresis, 2019, 40, 2672-2682.	2.4	7
16	Fundamental Studies on Poly(2-oxazoline) Side Chain Isomers Using Tandem Mass Spectrometry and Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 1220-1228.	2.8	7
17	Predicting Ion Mobility-Mass Spectrometry trends of polymers using the concept of apparent densities. Methods, 2018, 144, 125-133.	3.8	23
18	Comparison of Different Ion Mobility Setups Using Poly (Ethylene Oxide) PEO Polymers: Drift Tube, TIMS, and T-Wave . Journal of the American Society for Mass Spectrometry, 2018, 29, 114-120.	2.8	23

Johann Far

#	Article	IF	CITATIONS
19	Effectiveness and Limitations of Computational Chemistry and Mass Spectrometry in the Rational Design of Targetâ€specific Shift Reagents for Ion Mobility Spectrometry. ChemPhysChem, 2018, 19, 2921-2930.	2.1	9
20	Comprehensive Ion Mobility Calibration: Poly(ethylene oxide) Polymer Calibrants and General Strategies. Analytical Chemistry, 2017, 89, 12076-12086.	6.5	38
21	Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 2492-2499.	2.8	22
22	Evaluation of a new low sheath-flow interface for CE-MS. Electrophoresis, 2016, 37, 936-946.	2.4	29
23	Accurate Drift Time Determination by Traveling Wave Ion Mobility Spectrometry: The Concept of the Diffusion Calibration. Analytical Chemistry, 2016, 88, 11639-11646.	6.5	30
24	Structural analysis of ruthenium–arene complexes using ion mobility mass spectrometry, collision-induced dissociation, and DFT. Dalton Transactions, 2016, 45, 6361-6370.	3.3	16
25	Interlaboratory study to evaluate the robustness of capillary electrophoresisâ€mass spectrometry for peptide mapping. Journal of Separation Science, 2015, 38, 3262-3270.	2.5	36
26	The Use of Ion Mobility Mass Spectrometry for Isomer Composition Determination Extracted from Se-Rich Yeast. Analytical Chemistry, 2014, 86, 11246-11254.	6.5	12