
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pressure on thermo-oxidative reactions of saturates, aromatics, and resins (S-Ar-R) from extra-heavy crude oil. Fuel, 2022, 311, 122596.	3.4	9
2	Effect of pressure on the thermo-oxidative behavior of saturates, aromatics, and resins (S-Ar-R) mixtures. Fuel, 2022, 314, 122787.	3.4	4
3	Catalytic Decomposition of n-C7 Asphaltenes Using Tungsten Oxides–Functionalized SiO2 Nanoparticles in Steam/Air Atmospheres. Processes, 2022, 10, 349.	1.3	1
4	Technical and Environmental Feasibility Study of the Co-Production of Crude Oil and Electrical Energy from Geothermal Resources: First Field Trial in Colombia. Processes, 2022, 10, 568.	1.3	2
5	Freshwater production from air dehumidification using novel SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e378" altimg="si7.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub>-based supported material</mml:math 	2.5	2
6	and solar energy. Colombia case study. Energy Reports, 2022, 6, 3115-3126. Development of Acid Nanocapsules with Tailored Breaking Reservoir Temperature for the Removal of Formation Damage by Fines Migration. Energy & Fuels, 2022, 36, 4792-4798.	2.5	1
7	Development of a Novel Green Bio-Nanofluid from Sapindus Saponaria for Enhanced Oil Recovery Processes. Processes, 2022, 10, 1057.	1.3	3
8	Development and Evaluation from Laboratory to Field Trial of a Dual-Purpose Fracturing Nanofluid: Inhibition of Associated Formation Damage and Increasing Heavy Crude Oil Mobility. Nanomaterials, 2022, 12, 2195.	1.9	2
9	Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. Fuel, 2021, 283, 118931.	3.4	8
10	Effect of surface acidity of SiO2 nanoparticles on thermal stability of polymer solutions for application in EOR processes. Journal of Petroleum Science and Engineering, 2021, 196, 107802.	2.1	12
11	Phenomenological study of the micro- and macroscopic mechanisms during polymer flooding with SiO2 nanoparticles. Journal of Petroleum Science and Engineering, 2021, 198, 108135.	2.1	17
12	Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. Processes, 2021, 9, 175.	1.3	12
13	Theoretical and Experimental Approach for Understanding the Interactions Among SiO ₂ Nanoparticles, CaCO ₃ , and Xanthan Gum Components of Water-Based Mud. Energy & Fuels, 2021, 35, 4803-4814.	2.5	11
14	Molecular Dynamics Study of the Aggregation Behavior of Polycyclic Aromatic Hydrocarbon Molecules in <i>n</i> -Heptane–Toluene Mixtures: Assessing the Heteroatom Content Effect. Energy & Fuels, 2021, 35, 3119-3129.	2.5	12
15	Physicochemical characteristics of calcined MnFe2O4 solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C7 asphaltenes with air. Journal of Environmental Management, 2021, 281, 111871.	3.8	20
16	Monolithic carbon xerogels-metal composites for crude oil removal from oil in-saltwater emulsions and subsequent regeneration through oxidation process: Composites synthesis, adsorption studies, and oil decomposition experiments. Microporous and Mesoporous Materials, 2021, 319, 111039.	2.2	11
17	Catalytic Conversion of n-C7 Asphaltenes and Resins II into Hydrogen Using CeO2-Based Nanocatalysts. Nanomaterials, 2021, 11, 1301.	1.9	13
18	Effect of Steam Quality on Extra-Heavy Crude Oil Upgrading and Oil Recovery Assisted with PdO and NiO-Functionalized Al2O3 Nanoparticles. Processes, 2021, 9, 1009.	1.3	11

#	Article	IF	CITATIONS
19	Insights into the Morphology Effect of Ceria on the Catalytic Performance of NiO–PdO/CeO ₂ Nanoparticles for Thermo-oxidation of <i>n</i> -C ₇ Asphaltenes under Isothermal Heating at Different Pressures. Energy & Fuels, 2021, 35, 18170-18184.	2.5	12
20	Chemical Composition and Low-Temperature Fluidity Properties of Jet Fuels. Processes, 2021, 9, 1184.	1.3	9
21	The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: Insights through a simplex-centroid mixture design of experiments. Journal of Petroleum Science and Engineering, 2021, 203, 108494.	2.1	12
22	Development of a monolithic carbon xerogel-metal composite for crude oil removal from oil in-saltwater emulsions: Evaluation of reuse cycles. Microporous and Mesoporous Materials, 2021, 327, 111424.	2.2	6
23	Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. Processes, 2021, 9, 63.	1.3	15
24	A Selection Flowchart for Micromodel Experiments Based on Computational Fluid Dynamic Simulations of Surfactant Flooding in Enhanced Oil Recovery. Processes, 2021, 9, 1887.	1.3	3
25	Physical Insights about Viscosity Differences of Asphaltene Dissolved in Benzene and Xylene Isomers: Theoretical–Experimental Approaches. Energy & Fuels, 2021, 35, 18574-18582.	2.5	9
26	Field Applications of Nanotechnology in the Oil and Gas Industry: Recent Advances and Perspectives. Energy & Fuels, 2021, 35, 19266-19287.	2.5	31
27	A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery. Journal of Petroleum Science and Engineering, 2020, 184, 106589.	2.1	30
28	Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations. Nanomaterials, 2020, 10, 74.	1.9	14
29	Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol. Journal of Molecular Liquids, 2020, 300, 112256.	2.3	38
30	Injection of Nanofluids with Fluorosurfactant-Modified Nanoparticles Dispersed in a Flue Gas Stream at Very Low Concentration for Enhanced Oil Recovery (EOR) in Tight Gas–Condensate Reservoirs. Energy & Fuels, 2020, 34, 12517-12526.	2.5	15
31	Cardanol /SiO ₂ Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part II: Nanocomposite Evaluation and Coreflooding Test. ACS Omega, 2020, 5, 27800-27810.	1.6	12
32	Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant–Nanoparticle–Brine Interaction: From Laboratory Experiments to Oil Field Application. Nanomaterials, 2020, 10, 1579.	1.9	30
33	Cardanol/SiO ₂ Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO ₂ –Cardanol Interactions. Energy & Fuels, 2020, 34, 7048-7057.	2.5	22
34	Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. Nanomaterials, 2020, 10, 928.	1.9	18
35	Thermo-Oxidative Decomposition Behaviors of Different Sources of <i>n</i> -C ₇ Asphaltenes under High-Pressure Conditions. Energy & Fuels, 2020, 34, 8740-8758.	2.5	30
36	Easy and Rapid Synthesis of Carbon Quantum Dots from Mortiño (Vaccinium Meridionale Swartz) Extract for Use as Green Tracers in the Oil and Gas Industry: Lab-to-Field Trial Development in Colombia. Industrial & Engineering Chemistry Research, 2020, 59, 11359-11369.	1.8	21

#	Article	IF	CITATIONS
37	A novel design of silica-based completion nanofluids for heavy oil reservoirs. Journal of Petroleum Science and Engineering, 2020, 194, 107483.	2.1	8
38	Investigating the Performance of Carboxylate-Alumoxane Nanoparticles as a Novel Chemically Functionalized Inhibitor on Asphaltene Precipitation. ACS Omega, 2020, 5, 16149-16164.	1.6	18
39	Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. ACS Omega, 2020, 5, 5085-5097.	1.6	30
40	Effect of Multifunctional Nanocatalysts on <i>n</i> -C ₇ Asphaltene Adsorption and Subsequent Oxidation under High-Pressure Conditions. Energy & Fuels, 2020, 34, 6261-6278.	2.5	23
41	Effect of resin/asphaltene ratio on the rheological behavior of asphaltene solutions in a de-asphalted oil and p-xylene: A theoretical–experimental approach. Journal of Molecular Liquids, 2020, 315, 113754.	2.3	24
42	A novel foam formulation by Al2O3/SiO2 nanoparticles for EOR applications: A mechanistic study. Journal of Molecular Liquids, 2020, 304, 112730.	2.3	55
43	Functionalization of Î ³ -Alumina and Magnesia Nanoparticles with a Fluorocarbon Surfactant to Promote Ultra-Gas-Wet Surfaces: Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2020, 12, 13510-13520.	4.0	20
44	Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part II: dynamic filtration. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 015011.	0.7	8
45	Theoretical-experimental evaluation of rheological behavior of asphaltene solutions in toluene and p-xylene: Effect of the additional methyl group. Journal of Molecular Liquids, 2020, 303, 112664.	2.3	18
46	Disaggregation and discretization methods for formation damage estimation in oil and gas fields: an overview. DYNA (Colombia), 2020, 87, 105-115.	0.2	7
47	Novel biomaterial design based on Pseudomonas stutzeri–carbon xerogel microspheres for hydrocarbon removal from oil-in-saltwater emulsions: A new proposed treatment of produced water in oilfields. Journal of Water Process Engineering, 2020, 35, 101222.	2.6	12
48	NiO, Fe2O3, and MoO3 Supported over SiO2 Nanocatalysts for Asphaltene Adsorption and Catalytic Decomposition: Optimization through a Simplex–Centroid Mixture Design of Experiments. Catalysts, 2020, 10, 569.	1.6	21
49	Biomass-Derived Carbon Molecular Sieves Applied to an Enhanced Carbon Capture and Storage Process (e-CCS) for Flue Gas Streams in Shallow Reservoirs. Nanomaterials, 2020, 10, 980.	1.9	10
50	Nanoadsorbentes para captura de dióxido de carbono (CO2): un enfoque a la purificación del biogás. Revista lon, 2020, 33, .	0.1	0
51	Effect of ionic strength in low salinity water injection processes. CTyF - Ciencia, Tecnologia Y Futuro, 2020, 10, 17-26.	0.3	3
52	An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres. Materials, 2019, 12, 2088.	1.3	11
53	Effect of Pressure on the Oxidation Kinetics of Asphaltenes. Energy & amp; Fuels, 2019, 33, 10734-10744.	2.5	30
54	Effect of the NiO/SiO ₂ Nanoparticles-Assisted Ultrasound Cavitation Process on the Rheological Properties of Heavy Crude Oil: Steady State Rheometry and Oscillatory Tests. Energy & Fuels, 2019, 33, 9671-9680.	2.5	22

#	Article	IF	CITATIONS
55	Importance of the Nanofluid Preparation for Ultra-Low Interfacial Tension in Enhanced Oil Recovery Based on Surfactant–Nanoparticle–Brine System Interaction. ACS Omega, 2019, 4, 16171-16180.	1.6	39
56	Dual-Purpose Materials Based on Carbon Xerogel Microspheres (CXMs) for Delayed Release of Cannabidiol (CBD) and Subsequent Aflatoxin Removal. Molecules, 2019, 24, 3398.	1.7	5
57	Effect of the nanoparticles in the stability of hydrolyzed polyacrylamide/resorcinol/formaldehyde gel systems for water shutâ€off/conformance control applications. Journal of Applied Polymer Science, 2019, 136, 47568.	1.3	21
58	Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 2019, 294, 503-517.	4.2	43
59	Influence of the Ce4+/Ce3+ Redox-Couple on the Cyclic Regeneration for Adsorptive and Catalytic Performance of NiO-PdO/CeO2±l´ Nanoparticles for n-C7 Asphaltene Steam Gasification. Nanomaterials, 2019, 9, 734.	1.9	31
60	Dynamic Molecular Modeling and Experimental Approach of Fluorocarbon Surfactant-Functionalized SiO ₂ Nanoparticles for Gas-Wettability Alteration on Sandstones. Journal of Chemical & Engineering Data, 2019, 64, 1860-1872.	1.0	13
61	Optimization of the Load of Transition Metal Oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 Nanoparticles in Catalytic Steam Decomposition of n-C7 Asphaltenes at Low Temperatures. Nanomaterials, 2019, 9, 401.	1.9	34
62	Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils. Energies, 2019, 12, 1068.	1.6	26
63	Immobilization of P. stutzeri on Activated Carbons for Degradation of Hydrocarbons from Oil-in-Saltwater Emulsions. Nanomaterials, 2019, 9, 500.	1.9	14
64	Effect of Magnetic Iron Core–Carbon Shell Nanoparticles in Chemical Enhanced Oil Recovery for Ultralow Interfacial Tension Region. Energy & Fuels, 2019, 33, 4158-4168.	2.5	34
65	Upgrading of Extra-Heavy Crude Oils by Dispersed Injection of NiO–PdO/CeO2±δ Nanocatalyst-Based Nanofluids in the Steam. Nanomaterials, 2019, 9, 1755.	1.9	31
66	Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection. Energies, 2019, 12, 4633.	1.6	21
67	Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019, 12, 4671.	1.6	56
68	Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part I: nanofluid design based on fluid-nanoparticle interaction. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 045020.	0.7	6
69	Influence of silica nanoparticles on heavy oil microrheology via time-domain NMR T2 and diffusion probes. Fuel, 2019, 241, 962-972.	3.4	13
70	Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. Journal of Petroleum Science and Engineering, 2019, 174, 40-48.	2.1	43
71	Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs. Energy & Fuels, 2018, 32, 5824-5833.	2.5	50
72	Interaction of anionic surfactant-nanoparticles for gas - Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018, 51, 53-64.	2.1	75

#	Article	IF	CITATIONS
73	Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids. Adsorption Science and Technology, 2018, 36, 23-45.	1.5	40
74	Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. DYNA (Colombia), 2018, 85, 153-160.	0.2	19
75	Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO ₂ Nanoparticles in Polymer Flooding Processes. ACS Omega, 2018, 3, 18673-18684.	1.6	33
76	Effect of the Asphaltene Oxidation Process on the Formation of Emulsions of Water in Oil (W/O) Model Solutions. Energies, 2018, 11, 722.	1.6	11
77	Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications. Molecules, 2018, 23, 1523.	1.7	32
78	Suppression of Phase Separation as a Hypothesis to Account for Nuclei or Nanoaggregate Formation by Asphaltenes in Toluene. Energy & Fuels, 2018, 32, 6669-6677.	2.5	32
79	Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, 2018, 57, 12367-12377.	1.8	36
80	Ca-DTPMP nanoparticles-based nanofluids for the inhibition and remediation of formation damage due to CaCO3 scaling in tight gas-condensate reservoirs. Journal of Petroleum Science and Engineering, 2018, 169, 636-645.	2.1	23
81	Effect of temperature on antioxidant capacity during drying process of mortiño (Vaccinium) Tj ETQq1 1 0.7843	14.rgBT /(1.9	Dverlock 10 T
82	Effects of glycerol on the minimization of water readsorption on sub-bituminous coal. Drying Technology, 2017, 35, 249-260.	1.7	9
83	Experimental and Theoretical Study of Viscosity Reduction in Heavy Crude Oils by Addition of Nanoparticles. Energy & Fuels, 2017, 31, 1329-1338.	2.5	105
84	Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. Journal of Natural Gas Science and Engineering, 2017, 40, 347-355.	2.1	34
85	Anomalous Heavy-Oil Rheological Thinning Behavior upon Addition of Nanoparticles: Departure from Einstein's Theory. Chemical Engineering Communications, 2017, 204, 648-657.	1.5	12
86	Effect of SiO 2 -based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Conversion and Management, 2017, 148, 30-42.	4.4	29
87	The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 2017, 159, 841-852.	2.1	99
88	Chemical Alteration of Wettability of Sandstones with Polysorbate 80. Experimental and Molecular Dynamics Study. Energy & Fuels, 2017, 31, 11918-11924.	2.5	14
89	Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 2017, 157, 39-55.	2.1	114
90	Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel, 2017, 189, 322-333.	3.4	74

#	Article	IF	CITATIONS
91	Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartÃculas magnéticas. DYNA (Colombia), 2017, 84, 65-74.	0.2	8
92	Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading. Catalysts, 2017, 7, 319.	1.6	25
93	A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles. Energies, 2017, 10, 2064.	1.6	7
94	An Enhanced-Solvent Deasphalting Process: Effect of Inclusion of SiO ₂ Nanoparticles in the Quality of Deasphalted Oil. Journal of Nanomaterials, 2017, 2017, 1-14.	1.5	11
95	Adsorption-desorption of n–C7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration. CTyF - Ciencia, Tecnologia Y Futuro, 2016, 6, 89-106.	0.3	31
96	Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. DYNA (Colombia), 2016, 83, 171.	0.2	16
97	Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Petroleum Science, 2016, 13, 561-571.	2.4	49
98	Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs. Industrial & Engineering Chemistry Research, 2016, 55, 6122-6132.	1.8	102
99	Effects of resin I on the catalytic oxidation of n-C ₇ asphaltenes in the presence of silica-based nanoparticles. RSC Advances, 2016, 6, 74630-74642.	1.7	29
100	Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel, 2016, 184, 222-232.	3.4	143
101	Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments. Energy & amp; Fuels, 2016, 30, 2052-2059.	2.5	79
102	Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms. Energy & Fuels, 2016, 30, 264-272.	2.5	93
103	Effect of the temperature in adsorption phenomena of water onto Sub-Bituminous coal. BoletÃn De Ciencias De La Tierra, 2016, , 57-64.	0.1	1
104	Glycerol effect on the inhibition of spontaneous combustion of subbituminous coal. BoletÃn De Ciencias De La Tierra, 2016, , 64-74.	0.1	1
105	Efecto Térmico del Secado por Aspersión sobre los Metabolitos Antioxidantes de la Curuba Larga (Passiflora mollisima baley). Informacion Tecnologica (discontinued), 2015, 26, 77-84.	0.1	2
106	A New Model for Describing the Adsorption of Asphaltenes on Porous Media at a High Pressure and Temperature under Flow Conditions. Energy & Fuels, 2015, 29, 4210-4221.	2.5	35
107	Influence of Asphaltene Aggregation on the Adsorption and Catalytic Behavior of Nanoparticles. Energy & Fuels, 2015, 29, 1610-1621.	2.5	65
108	Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates. Industrial & Engineering Chemistry Research, 2015, 54, 8201-8211.	1.8	106

#	Article	IF	CITATIONS
109	Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C 7 asphaltenes. Fuel, 2015, 156, 110-120.	3.4	57
110	Evaluation of the Sorption Equilibrium and Effect of Drying Temperature on the Antioxidant Capacity of the Jaboticaba(Myrciaria Cauliflora). Chemical Engineering Communications, 2015, , .	1.5	6
111	Effect of Relative Humidity on the Antioxidant Activity of Spray-Dried Banana Passion Fruit (Passiflora) Tj ETQq1 1 Engineering Communications, 2015, 202, 269-278.	0.784314 1.5	rgBT /Overi 11
112	Compositional characterization and storage capacity of shale samples from La Luna and Conejo Formations (Middle Magdalena basin and the Eastern Cordillera): Implications for evaluation of cretaceous shale gas in Colombia. BoletĂn De Ciencias De La Tierra, 2015, , 45-53.	0.1	3
113	Emulsions with heavy crude oil in presence of nanoparticles. BoletÃn De Ciencias De La Tierra, 2014, , 55-68.	0.1	3
114	Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. Journal of Colloid and Interface Science, 2014, 425, 168-177.	5.0	83
115	Water Remediation Based on Oil Adsorption Using Nanosilicates Functionalized with a Petroleum Vacuum Residue. Adsorption Science and Technology, 2014, 32, 197-207.	1.5	29
116	Removal of oil from oil-in-saltwater emulsions by adsorption onto nano-alumina functionalized with petroleum vacuum residue. Journal of Colloid and Interface Science, 2014, 433, 58-67.	5.0	55
117	A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the "Chemical Theory― Energy & Fuels, 2014, 28, 4963-4975.	2.5	92
118	Adsorption and Subsequent Oxidation of Colombian Asphaltenes onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles. Energy & Fuels, 2013, 27, 7336-7347.	2.5	112
119	Nanoparticles for Inhibition of Asphaltenes Damage: Adsorption Study and Displacement Test on Porous Media. Energy & Fuels, 2013, 27, 2899-2907.	2.5	179
120	Modeling and Prediction of Asphaltene Adsorption Isotherms Using Polanyi's Modified Theory. Energy & Fuels, 2013, 27, 2908-2914.	2.5	42
121	Wettability Alteration of Sandstone Cores by Alumina-Based Nanofluids. Energy & Fuels, 2013, 27, 3659-3665.	2.5	329
122	Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel, 2013, 105, 408-414.	3.4	112
123	Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica (discontinued), 2013, 24, 103-112.	0.1	24
124	Sorption of Asphaltenes onto Nanoparticles of Nickel Oxide Supported on Nanoparticulated Silica Gel. Energy & Fuels, 2012, 26, 1725-1730.	2.5	81
125	Sorption Properties of Cape Gooseberry (Physalis peruviana L.). International Journal of Food Engineering, 2012, 8, .	0.7	4
126	Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications. Energy Conversion and Management, 2012, 53, 219-223.	4.4	64

#	Article	IF	CITATIONS
127	A New Model for Predicting Sorption Isotherm of Water in Foods. International Journal of Food Engineering, 2011, 7, .	0.7	6
128	Adsorption of water on Grace Silica Gel 127B at low and high pressure. Adsorption, 2011, 17, 977-984.	1.4	17
129	A rapid and novel approach for predicting water sorption isotherms and isosteric heats of different meat types. Meat Science, 2010, 86, 921-925.	2.7	16
130	Mathematical model of the sorption phenomenon of methanol in activated coal. Energy Conversion and Management, 2009, 50, 1295-1303.	4.4	13