Liam Dolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758572/publications.pdf

Version: 2024-02-01

		19657	1	6650
162	16,619	61		123
papers	citations	h-index		g-index
233	233	233		14595
233	233	233		14333
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Fifteen compelling open questions in plant cell biology. Plant Cell, 2022, 34, 72-102.	6.6	27
2	The <i>New Phytologist</i> Tansley Medal 2021 – MichaÅ, Bogdziewicz and Anna T. Trugman. New Phytologist, 2022, 234, 5-6.	7.3	2
3	The <i>New Phytologist</i> Tansley Medal 2020 – Tommaso Jucker. New Phytologist, 2022, 233, 583-584.	7.3	1
4	Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant, 2021, 14, 838-846.	8.3	24
5	Microtubule associated protein WAVE DAMPENED2-LIKE (WDL) controls microtubule bundling and the stability of the site of tip-growth in Marchantia polymorpha rhizoids. PLoS Genetics, 2021, 17, e1009533.	3.5	9
6	An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert. ELife, $2021,10,10$	6.0	15
7	The <i>New Phytologist</i> Tansley Medal 2019 – Philippa Borrill and Kai Zhu. New Phytologist, 2020, 228, 1697-1697.	7.3	2
8	The <i>New Phytologist</i> Tansley Medal 2018 – Liana Burghardt and Jana Sperschneider. New Phytologist, 2020, 228, 5-5.	7.3	3
9	Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modified leaves. Scientific Reports, 2020, 10, 21547.	3.3	9
10	Multiple origins of dichotomous and lateral branching during root evolution. Nature Plants, 2020, 6, 454-459.	9.3	19
11	Plant Evolution: An Ancient Mechanism Protects Plants and Algae from Heat Stress. Current Biology, 2020, 30, R277-R278.	3.9	2
12	Multiple Metabolic Innovations and Losses Are Associated with Major Transitions in Land Plant Evolution. Current Biology, 2020, 30, 1783-1800.e11.	3.9	42
13	MpFEW RHIZOIDS1 miRNA-Mediated Lateral Inhibition Controls Rhizoid Cell Patterning in Marchantia polymorpha. Current Biology, 2020, 30, 1905-1915.e4.	3.9	29
14	An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity During Tip Growth. Current Biology, 2019, 29, 3899-3908.e3.	3.9	27
15	Evolution: Diversification of Angiosperm Rooting Systems in the Early Cretaceous. Current Biology, 2019, 29, R1081-R1083.	3.9	10
16	Neofunctionalisation of basic helixâ^'loopâ^'helix proteins occurred when embryophytes colonised the land. New Phytologist, 2019, 223, 993-1008.	7.3	18
17	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biology, 2019, 17, e3000560.	5 . 6	34
18	Rhynie chert fossils demonstrate the independent origin and gradual evolution of lycophyte roots. Current Opinion in Plant Biology, 2019, 47, 119-126.	7.1	31

#	Article	IF	CITATIONS
19	Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants, 2019, 5, 84-94.	9.3	115
20	Evolutionary and Functional Analysis of a Chara Plasma Membrane H+-ATPase. Frontiers in Plant Science, 2019, 10, 1707.	3.6	10
21	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
22	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
23	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
24	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
25	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
26	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
27	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	12.8	146
28	Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic <i>Brachypodium distachyon</i> lines overexpressing endogenous <i><scp>RSL</scp></i> genes. New Phytologist, 2018, 217, 1654-1666.	7.3	68
29	History and contemporary significance of the Rhynie cherts—our earliest preserved terrestrial ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160489.	4.0	73
30	Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170042.	4.0	21
31	Ptdlns(3,5)P2 mediates root hair shank hardening in Arabidopsis. Nature Plants, 2018, 4, 888-897.	9.3	57
32	The <i>New Phytologist</i> Tansley Medal 2017. New Phytologist, 2018, 219, 5-5.	7.3	6
33	Dedication: Nigel Trewin (1944–2017). Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170365.	4.0	0
34	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
35	Stepwise and independent origins of roots among land plants. Nature, 2018, 561, 235-238.	27.8	91
36	Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants. ELife, 2018, 7, .	6.0	31

#	Article	IF	Citations
37	Functional <scp>PTB</scp> phosphate transporters are present in streptophyte algae and early diverging land plants. New Phytologist, 2017, 214, 1158-1171.	7.3	25
38	Mp <i>WIP</i> regulates air pore complex development in the liverwort <i>Marchantia polymorpha</i> Development (Cambridge), 2017, 144, 1472-1476.	2.5	48
39	The evolution of lycopsid rooting structures: conservatism and disparity. New Phytologist, 2017, 215, 538-544.	7. 3	51
40	The <i>New Phytologist</i> Tansley Medal 2016. New Phytologist, 2017, 213, 1561-1561.	7.3	6
41	Root hair development in grasses and cereals (Poaceae). Current Opinion in Genetics and Development, 2017, 45, 76-81.	3.3	21
42	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
43	RSL class I genes positively regulate root hair development in Oryza sativa. New Phytologist, 2017, 213, 314-323.	7.3	32
44	Networks of highly branched stigmarian rootlets developed on the first giant trees. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6695-6700.	7.1	51
45	The <i>New Phytologist</i> Tansley Medal 2015. New Phytologist, 2016, 210, 5-5.	7.3	8
46	Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components. Journal of Experimental Botany, 2016, 67, 4535-4543.	4.8	35
47	The Stepwise Increase in the Number of Transcription Factor Families in the Precambrian Predated the Diversification of Plants On Land. Molecular Biology and Evolution, 2016, 33, 2815-2819.	8.9	86
48	Diversification of a Transcription Factor Family Led to the Evolution of Antagonistically Acting Genetic Regulators of Root Hair Growth. Current Biology, 2016, 26, 1622-1628.	3.9	92
49	<scp>ROOT HAIR DEFECTIVE SIX</scp> â€ <scp>LIKE</scp> 4 (<scp>RSL</scp> 4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytologist, 2016, 212, 944-953.	7. 3	83
50	Growth regulation in tip-growing cells that develop on the epidermis. Current Opinion in Plant Biology, 2016, 34, 77-83.	7.1	20
51	The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants. Current Biology, 2016, 26, 3238-3244.	3.9	115
52	Unique Cellular Organization in the Oldest Root Meristem. Current Biology, 2016, 26, 1629-1633.	3.9	26
53	Liam Dolan. Current Biology, 2016, 26, R85-R86.	3.9	0
54	A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. Molecular Plant, 2016, 9, 205-220.	8.3	197

#	Article	IF	CITATIONS
55	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	3.1	60
56	RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants. Current Biology, 2016, 26, 93-99.	3.9	129
57	ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon. PLoS Genetics, 2016, 12, e1006211.	3.5	54
58	The <i>New Phytologist</i> Tansley Medal 2014. New Phytologist, 2015, 205, 951-952.	7.3	9
59	Introducing Tansley insights – short and timely, focussed reviews within the plant sciences. New Phytologist, 2015, 205, 953-954.	7.3	1
60	Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nature Plants, 2015, 1, 15138.	9.3	84
61	Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3959-68.	7.1	82
62	Identification of Reference Genes for Real-Time Quantitative PCR Experiments in the Liverwort Marchantia polymorpha. PLoS ONE, 2015, 10, e0118678.	2.5	73
63	The <i>New Phytologist</i> Tansley Medals 2013. New Phytologist, 2014, 201, 1077-1078.	7.3	10
64	Symmetric Development: Transcriptional Regulation of Symmetry Transition in Plants. Current Biology, 2014, 24, R1172-R1174.	3.9	1
65	Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biology, 2014, 14, 197.	3.6	49
66	Sustainable Intensification in Agriculture: Premises and Policies. Science, 2013, 341, 33-34.	12.6	1,233
67	Pointing <scp>PIN</scp> s in the right directions: a potassium transporter is required for the polar localization of auxin efflux carriers. New Phytologist, 2013, 197, 1027-1028.	7.3	18
68	The <i>New Phytologist</i> Tansley Medal 2012. New Phytologist, 2013, 197, 1025-1026.	7.3	11
69	Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9571-9576.	7.1	123
70	Morphological evolution in land plants: new designs with old genes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 508-518.	4.0	198
71	Endodermal cell–cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Annals of Botany, 2012, 110, 361-371.	2.9	37
72	The evolution of root hairs and rhizoids. Annals of Botany, 2012, 110, 205-212.	2.9	136

#	Article	IF	CITATIONS
73	First plants cooled the Ordovician. Nature Geoscience, 2012, 5, 86-89.	12.9	261
74	The <i>New Phytologist</i> Tansley medal 2011. New Phytologist, 2012, 193, 821-822.	7.3	14
75	Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens. New Phytologist, 2011, 192, 319-327.	7.3	59
76	Root hair development involves asymmetric cell division in Brachypodium distachyon and symmetric division in Oryza sativa. New Phytologist, 2011, 192, 601-610.	7.3	61
77	Root hairs: development, growth and evolution at the plant-soil interface. Plant and Soil, 2011, 346, 1-14.	3.7	135
78	RSL genes are sufficient for rhizoid system development in early diverging land plants. Development (Cambridge), 2011, 138, 2273-2281.	2.5	79
79	Early evolution of bHLH proteins in plants. Plant Signaling and Behavior, 2010, 5, 911-912.	2.4	43
80	SCHIZORIZA Controls Tissue System Complexity in Plants. Current Biology, 2010, 20, 818-823.	3.9	59
81	A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 2010, 42, 264-267.	21.4	295
82	Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Molecular Biology and Evolution, 2010, 27, 862-874.	8.9	503
83	Body building on land—morphological evolution of land plants. Current Opinion in Plant Biology, 2009, 12, 4-8.	7.1	35
84	Meristems: The Root of Stem Cell Regulation. Current Biology, 2009, 19, R459-R460.	3.9	6
85	Identification of the Arabidopsis <i>dry2/sqe1â€5</i> mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant Journal, 2009, 59, 63-76.	5.7	114
86	In situ Analysis of Gene Expression in Plants. Methods in Molecular Biology, 2009, 513, 229-242.	0.9	5
87	Reactive Oxygen Species in Growth and Development. Signaling and Communication in Plants, 2009, , 43-53.	0.7	11
88	NADPH oxidase involvement in cellular integrity. Planta, 2008, 227, 1415-1418.	3.2	32
89	Chromatin and Arabidopsis root development. Seminars in Cell and Developmental Biology, 2008, 19, 580-585.	5.0	7
90	Plant Evolution: TALES of Development. Cell, 2008, 133, 771-773.	28.9	4

#	Article	IF	Citations
91	Local Positive Feedback Regulation Determines Cell Shape in Root Hair Cells. Science, 2008, 319, 1241-1244.	12.6	486
92	A Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis. PLoS Biology, 2008, 6, e235.	5.6	78
93	Proximal–distal patterns of transcription factor gene expression during Arabidopsis root development. Journal of Experimental Botany, 2008, 59, 235-245.	4.8	9
94	OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice. Plant Physiology, 2007, 143, 1220-1230.	4.8	166
95	PLANT SCIENCE: SCARECROWs at the Border. Science, 2007, 316, 377-378.	12.6	9
96	An Ancient Mechanism Controls the Development of Cells with a Rooting Function in Land Plants. Science, 2007, 316, 1477-1480.	12.6	402
97	Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. Journal of Experimental Botany, 2007, 58, 1843-1849.	4.8	125
98	Oxylipins Produced by the 9-Lipoxygenase Pathway in Arabidopsis Regulate Lateral Root Development and Defense Responses through a Specific Signaling Cascade. Plant Cell, 2007, 19, 831-846.	6.6	304
99	Ethylene Modulates Stem Cell Division in the <i>Arabidopsis thaliana</i> Root. Science, 2007, 317, 507-510.	12.6	201
100	Control of Plant Development by Reactive Oxygen Species. Plant Physiology, 2006, 141, 341-345.	4.8	444
101	A Distant Coilin Homologue Is Required for the Formation of Cajal Bodies in Arabidopsis. Molecular Biology of the Cell, 2006, 17, 2942-2951.	2.1	122
102	Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. Journal of Experimental Botany, 2006, 57, 51-54.	4.8	44
103	The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany, 2006, 57, 1829-1834.	4.8	203
104	Threeâ€dimensional modelling of wheat endosperm development. New Phytologist, 2005, 168, 253-262.	7.3	21
105	A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature, 2005, 438, 1013-1016.	27.8	327
106	Systematic Spatial Analysis of Gene Expression during Wheat Caryopsis Development. Plant Cell, 2005, 17, 2172-2185.	6.6	112
107	A streamlined method for systematic, high resolution in situ analysis of mRNA distribution in plants. Plant Methods, 2005, 1, 8.	4.3	21
108	Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant Journal, 2004, 40, 523-535.	5.7	177

#	Article	lF	CITATIONS
109	Cell expansion in roots. Current Opinion in Plant Biology, 2004, 7, 33-39.	7.1	125
110	Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, 422, 442-446.	27.8	1,999
111	Epidermal patterning genes are active during embryogenesis in Arabidopsis. Development (Cambridge), 2003, 130, 2893-2901.	2.5	34
112	AKT1 and TRH1 are required during root hair elongation in Arabidopsis. Journal of Experimental Botany, 2003, 54, 781-788.	4.8	77
113	The Development of Cell Pattern in the Arabidopsis Root Epidermis. , 2003, , 129-137.		0
114	Root Development. The Arabidopsis Book, 2002, 1, e0101.	0.5	146
115	Building a hair: tip growth inArabidopsis thalianaroot hairs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 815-821.	4.0	133
116	Galactose Biosynthesis in Arabidopsis. Current Biology, 2002, 12, 1840-1845.	3.9	153
117	Cell specification in the <i>Arabidopsis</i> root epidermis requires the activity of <i>ECTOPIC ROOT HAIR 3</i> 倓 a katanin-p60 protein. Development (Cambridge), 2002, 129, 123-131.	2.5	110
118	<i>SCHIZORIZA</i> controls an asymmetric cell division and restricts epidermal identity in the <i>Arabidopsis</i> root. Development (Cambridge), 2002, 129, 4327-4334.	2.5	51
119	Root Hairs as a Model System for Studying Plant Cell Growth. Annals of Botany, 2001, 88, 1-7.	2.9	72
120	The role of ethylene in root hair growth inArabidopsis. Journal of Plant Nutrition and Soil Science, 2001, 164, 141-145.	1.9	72
121	Cell biology and genetics of root hair formation inArabidopsis thaliana. Protoplasma, 2001, 215, 140-149.	2.1	52
122	Plant development: The benefits of a change of scene. Current Biology, 2001, 11, R702-R704.	3.9	1
123	Root patterning: SHORT ROOT on the move. Current Biology, 2001, 11, R983-R985.	3.9	7
124	How and where to build a root hair. Current Opinion in Plant Biology, 2001, 4, 550-554.	7.1	40
125	Evolution and genetics of root hair stripes in the root epidermis. Journal of Experimental Botany, 2001, 52, 413-417.	4.8	85
126	TRH1 Encodes a Potassium Transporter Required for Tip Growth in Arabidopsis Root Hairs. Plant Cell, 2001, 13, 139-151.	6.6	276

#	Article	IF	Citations
127	KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes and Development, 2001, 15, 79-89.	5.9	232
128	Evolution and genetics of root hair stripes in the root epidermis. Journal of Experimental Botany, 2001, 52, 413-417.	4.8	49
129	The nucleus: a highly organized but dynamic structure. Journal of Microscopy, 2000, 198, 199-207.	1.8	20
130	Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta, 2000, 211, 191-199.	3.2	145
131	Genetic Interactions during Root Hair Morphogenesis in Arabidopsis. Plant Cell, 2000, 12, 1961.	6.6	3
132	Genetic Interactions during Root Hair Morphogenesis in Arabidopsis. Plant Cell, 2000, 12, 1961-1974.	6.6	207
133	Development of the root pole and cell patterning in Arabidopsis roots. Current Opinion in Genetics and Development, 2000, 10, 405-409.	3.3	22
134	The Movement of Coiled Bodies Visualized in Living Plant Cells by the Green Fluorescent Protein. Molecular Biology of the Cell, 1999, 10, 2297-2307.	2.1	138
135	Differential ethylene sensitivity of epidermal cells is involved in the establishment of cell pattern in the Arabidopsisroot. Physiologia Plantarum, 1999, 106, 311-317.	5.2	57
136	Signalling in cell type specification. Seminars in Cell and Developmental Biology, 1999, 10, 149-156.	5.0	10
137	Root Development in Arabidopsis. , 1999, , 133-144.		1
138	Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Current Biology, 1998, 8, 421-430.	3.9	162
139	TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytologist, 1998, 138, 49-58.	7.3	78
140	Root pattern: Shooting in the dark?. Seminars in Cell and Developmental Biology, 1998, 9, 201-206.	5.0	18
141	Control of Cell Division in the Root Epidermis of Arabidopsis thaliana. Developmental Biology, 1998, 194, 235-245.	2.0	166
142	Stomata Patterning on the Hypocotyl of Arabidopsis thalianals Controlled by Genes Involved in the Control of Root Epidermis Patterning. Developmental Biology, 1998, 194, 226-234.	2.0	118
143	Pointing roots in the right direction: the role of auxin transport in response toÂgravity. Genes and Development, 1998, 12, 2091-2095.	5.9	29
144	The <i>ROOT HAIRLESS 1</i> gene encodes a nuclear protein required for root hair initiation in <i>Arabidopsis</i> . Genes and Development, 1998, 12, 2013-2021.	5.9	67

#	Article	IF	Citations
145	A model system to study the effects of elevated CO2 on the developmental physiology of roots: the use of Arabidopsis thaliana. Journal of Experimental Botany, 1998, 49, 593-597.	4.8	34
146	The Okra leaf shape mutation in cotton is active in all cell layers of the leaf. American Journal of Botany, 1998, 85, 322-327.	1.7	25
147	A model system to study the effects of elevated CO2 on the developmental physiology of roots: the use of Arabidopsis thaliana. Journal of Experimental Botany, 1998, 49, 593-597.	4.8	4
148	Developmental regulation of pectic polysaccharides in the root meristem of Arabidopsis. Journal of Experimental Botany, 1997, 48, 713-720.	4.8	46
149	The role of ethylene in the development of plant form. Journal of Experimental Botany, 1997, 48, 201-210.	4.8	59
150	The COW1 Locus of Arabidopsis Acts after RHD2, and in Parallel with RHD3 and TIP1, to Determine the Shape, Rate of Elongation, and Number of Root Hairs Produced from Each Site of Hair Formation. Plant Physiology, 1997, 115, 981-990.	4.8	81
151	Scarecrow: Specifying asymmetric cell divisions throughout development. Trends in Plant Science, 1997, 2, 1-2.	8.8	17
152	The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant Journal, 1996, 10, 393-402.	5.7	340
153	Pattern in the Root Epidermis: An Interplay of Diffusible Signals and Cellular Geometry. Annals of Botany, 1996, 77, 547-553.	2.9	9
154	Two ways to skin a plant: The analysis of root and shoot epidermal development inArabidopsis. BioEssays, 1995, 17, 865-872.	2.5	10
155	Ethylene is a positive regulator of root hair development in <i>Arabidopsis thaliana</i> . Plant Journal, 1995, 8, 943-948.	5.7	294
156	Secondary thickening in roots of Arabidopsis thaliana: anatomy and cell surface changes. New Phytologist, 1995, 131, 121-128.	7.3	81
157	An AGP epitope distinguishes a central metaxylem initial from other vascular initials in theArabidopsis root. Protoplasma, 1995, 189, 149-155.	2.1	57
158	Effects of elevated CO2 on cellular mechanisms, growth and development of trees with particular reference to hybrid poplar. Forestry, 1995, 68, 379-390.	2.3	14
159	Plant development: pulled up by the roots. Current Opinion in Genetics and Development, 1995, 5, 432-438.	3.3	23
160	Immunolabelling of cell surfaces of Arabidopsis thalianaroots following infection by Meloidogyne incognita (Nematoda). Journal of Experimental Botany, 1995, 46, 1711-1720.	4.8	20
161	Import of precursor proteins intoVicia fabamitochondria. FEBS Letters, 1988, 236, 217-220.	2.8	22
162	Root Epidermal Development in Arabidopsis., 0,, 64-82.		1