Liam Dolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758572/publications.pdf Version: 2024-02-01

		19657	16650
162	16,619	61	123
papers	citations	h-index	g-index
233	233	233	14595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, 422, 442-446.	27.8	1,999
2	Sustainable Intensification in Agriculture: Premises and Policies. Science, 2013, 341, 33-34.	12.6	1,233
3	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
4	Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Molecular Biology and Evolution, 2010, 27, 862-874.	8.9	503
5	Local Positive Feedback Regulation Determines Cell Shape in Root Hair Cells. Science, 2008, 319, 1241-1244.	12.6	486
6	Control of Plant Development by Reactive Oxygen Species. Plant Physiology, 2006, 141, 341-345.	4.8	444
7	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
8	An Ancient Mechanism Controls the Development of Cells with a Rooting Function in Land Plants. Science, 2007, 316, 1477-1480.	12.6	402
9	The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant Journal, 1996, 10, 393-402.	5.7	340
10	A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature, 2005, 438, 1013-1016.	27.8	327
11	Oxylipins Produced by the 9-Lipoxygenase Pathway in Arabidopsis Regulate Lateral Root Development and Defense Responses through a Specific Signaling Cascade. Plant Cell, 2007, 19, 831-846.	6.6	304
12	A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 2010, 42, 264-267.	21.4	295
13	Ethylene is a positive regulator of root hair development in <i>Arabidopsis thaliana</i> . Plant Journal, 1995, 8, 943-948.	5.7	294
14	TRH1 Encodes a Potassium Transporter Required for Tip Growth in Arabidopsis Root Hairs. Plant Cell, 2001, 13, 139-151.	6.6	276
15	First plants cooled the Ordovician. Nature Geoscience, 2012, 5, 86-89.	12.9	261
16	KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes and Development, 2001, 15, 79-89.	5.9	232
17	Genetic Interactions during Root Hair Morphogenesis in Arabidopsis. Plant Cell, 2000, 12, 1961-1974.	6.6	207
18	The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany, 2006, 57, 1829-1834.	4.8	203

#	Article	IF	CITATIONS
19	Ethylene Modulates Stem Cell Division in the <i>Arabidopsis thaliana</i> Root. Science, 2007, 317, 507-510.	12.6	201
20	Morphological evolution in land plants: new designs with old genes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 508-518.	4.0	198
21	A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. Molecular Plant, 2016, 9, 205-220.	8.3	197
22	Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant Journal, 2004, 40, 523-535.	5.7	177
23	Control of Cell Division in the Root Epidermis ofArabidopsis thaliana. Developmental Biology, 1998, 194, 235-245.	2.0	166
24	OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice. Plant Physiology, 2007, 143, 1220-1230.	4.8	166
25	Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Current Biology, 1998, 8, 421-430.	3.9	162
26	Galactose Biosynthesis in Arabidopsis. Current Biology, 2002, 12, 1840-1845.	3.9	153
27	Root Development. The Arabidopsis Book, 2002, 1, e0101.	0.5	146
28	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	12.8	146
29	Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta, 2000, 211, 191-199.	3.2	145
30	The Movement of Coiled Bodies Visualized in Living Plant Cells by the Green Fluorescent Protein. Molecular Biology of the Cell, 1999, 10, 2297-2307.	2.1	138
31	The evolution of root hairs and rhizoids. Annals of Botany, 2012, 110, 205-212.	2.9	136
32	Root hairs: development, growth and evolution at the plant-soil interface. Plant and Soil, 2011, 346, 1-14.	3.7	135
33	Building a hair: tip growth inArabidopsis thalianaroot hairs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 815-821.	4.0	133
34	RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants. Current Biology, 2016, 26, 93-99.	3.9	129
35	Cell expansion in roots. Current Opinion in Plant Biology, 2004, 7, 33-39.	7.1	125
36	Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. Journal of Experimental Botany, 2007, 58, 1843-1849.	4.8	125

#	Article	IF	CITATIONS
37	Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9571-9576.	7.1	123
38	A Distant Coilin Homologue Is Required for the Formation of Cajal Bodies in Arabidopsis. Molecular Biology of the Cell, 2006, 17, 2942-2951.	2.1	122
39	Stomata Patterning on the Hypocotyl ofArabidopsis thalianals Controlled by Genes Involved in the Control of Root Epidermis Patterning. Developmental Biology, 1998, 194, 226-234.	2.0	118
40	The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants. Current Biology, 2016, 26, 3238-3244.	3.9	115
41	Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants, 2019, 5, 84-94.	9.3	115
42	Identification of the Arabidopsis <i>dry2/sqe1â€5</i> mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant Journal, 2009, 59, 63-76.	5.7	114
43	Systematic Spatial Analysis of Gene Expression during Wheat Caryopsis Development. Plant Cell, 2005, 17, 2172-2185.	6.6	112
44	Cell specification in the <i>Arabidopsis</i> root epidermis requires the activity of <i>ECTOPIC ROOT HAIR 3</i> – a katanin-p60 protein. Development (Cambridge), 2002, 129, 123-131.	2.5	110
45	Diversification of a Transcription Factor Family Led to the Evolution of Antagonistically Acting Genetic Regulators of Root Hair Growth. Current Biology, 2016, 26, 1622-1628.	3.9	92
46	Stepwise and independent origins of roots among land plants. Nature, 2018, 561, 235-238.	27.8	91
47	The Stepwise Increase in the Number of Transcription Factor Families in the Precambrian Predated the Diversification of Plants On Land. Molecular Biology and Evolution, 2016, 33, 2815-2819.	8.9	86
48	Evolution and genetics of root hair stripes in the root epidermis. Journal of Experimental Botany, 2001, 52, 413-417.	4.8	85
49	Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nature Plants, 2015, 1, 15138.	9.3	84
50	<scp>ROOT HAIR DEFECTIVE SIX</scp> â€ <scp>LIKE</scp> 4 (<scp>RSL</scp> 4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytologist, 2016, 212, 944-953.	7.3	83
51	Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3959-68.	7.1	82
52	Secondary thickening in roots of Arabidopsis thaliana: anatomy and cell surface changes. New Phytologist, 1995, 131, 121-128.	7.3	81
53	The COW1 Locus of Arabidopsis Acts after RHD2, and in Parallel with RHD3 and TIP1, to Determine the Shape, Rate of Elongation, and Number of Root Hairs Produced from Each Site of Hair Formation. Plant Physiology, 1997, 115, 981-990.	4.8	81
54	RSL genes are sufficient for rhizoid system development in early diverging land plants. Development (Cambridge), 2011, 138, 2273-2281.	2.5	79

#	Article	IF	CITATIONS
55	TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytologist, 1998, 138, 49-58.	7.3	78
56	A Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis. PLoS Biology, 2008, 6, e235.	5.6	78
57	AKT1 and TRH1 are required during root hair elongation in Arabidopsis. Journal of Experimental Botany, 2003, 54, 781-788.	4.8	77
58	History and contemporary significance of the Rhynie cherts—our earliest preserved terrestrial ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160489.	4.0	73
59	Identification of Reference Genes for Real-Time Quantitative PCR Experiments in the Liverwort Marchantia polymorpha. PLoS ONE, 2015, 10, e0118678.	2.5	73
60	Root Hairs as a Model System for Studying Plant Cell Growth. Annals of Botany, 2001, 88, 1-7.	2.9	72
61	The role of ethylene in root hair growth inArabidopsis. Journal of Plant Nutrition and Soil Science, 2001, 164, 141-145.	1.9	72
62	Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic <i>Brachypodium distachyon</i> lines overexpressing endogenous <i><scp>RSL</scp></i> genes. New Phytologist, 2018, 217, 1654-1666.	7.3	68
63	The <i>ROOT HAIRLESS 1</i> gene encodes a nuclear protein required for root hair initiation in <i>Arabidopsis</i> . Genes and Development, 1998, 12, 2013-2021.	5.9	67
64	Root hair development involves asymmetric cell division in Brachypodium distachyon and symmetric division in Oryza sativa. New Phytologist, 2011, 192, 601-610.	7.3	61
65	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	3.1	60
66	The role of ethylene in the development of plant form. Journal of Experimental Botany, 1997, 48, 201-210.	4.8	59
67	SCHIZORIZA Controls Tissue System Complexity in Plants. Current Biology, 2010, 20, 818-823.	3.9	59
68	Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens. New Phytologist, 2011, 192, 319-327.	7.3	59
69	An AGP epitope distinguishes a central metaxylem initial from other vascular initials in theArabidopsis root. Protoplasma, 1995, 189, 149-155.	2.1	57
70	Differential ethylene sensitivity of epidermal cells is involved in the establishment of cell pattern in theArabidopsisroot. Physiologia Plantarum, 1999, 106, 311-317.	5.2	57
71	PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis. Nature Plants, 2018, 4, 888-897.	9.3	57
72	ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon. PLoS Genetics, 2016, 12, e1006211.	3.5	54

#	Article	IF	CITATIONS
73	Cell biology and genetics of root hair formation inArabidopsis thaliana. Protoplasma, 2001, 215, 140-149.	2.1	52
74	Networks of highly branched stigmarian rootlets developed on the first giant trees. Proceedings of the United States of America, 2016, 113, 6695-6700.	7.1	51
75	The evolution of lycopsid rooting structures: conservatism and disparity. New Phytologist, 2017, 215, 538-544.	7.3	51
76	<i>SCHIZORIZA</i> controls an asymmetric cell division and restricts epidermal identity in the <i>Arabidopsis</i> root. Development (Cambridge), 2002, 129, 4327-4334.	2.5	51
77	Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biology, 2014, 14, 197.	3.6	49
78	Evolution and genetics of root hair stripes in the root epidermis. Journal of Experimental Botany, 2001, 52, 413-417.	4.8	49
79	Mp <i>WIP</i> regulates air pore complex development in the liverwort <i>Marchantia polymorpha</i> . Development (Cambridge), 2017, 144, 1472-1476.	2.5	48
80	Developmental regulation of pectic polysaccharides in the root meristem of Arabidopsis. Journal of Experimental Botany, 1997, 48, 713-720.	4.8	46
81	Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. Journal of Experimental Botany, 2006, 57, 51-54.	4.8	44
82	Early evolution of bHLH proteins in plants. Plant Signaling and Behavior, 2010, 5, 911-912.	2.4	43
83	Multiple Metabolic Innovations and Losses Are Associated with Major Transitions in Land Plant Evolution. Current Biology, 2020, 30, 1783-1800.e11.	3.9	42
84	How and where to build a root hair. Current Opinion in Plant Biology, 2001, 4, 550-554.	7.1	40
85	Endodermal cell–cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Annals of Botany, 2012, 110, 361-371.	2.9	37
86	Body building on land—morphological evolution of land plants. Current Opinion in Plant Biology, 2009, 12, 4-8.	7.1	35
87	Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components. Journal of Experimental Botany, 2016, 67, 4535-4543.	4.8	35
88	A model system to study the effects of elevated CO2 on the developmental physiology of roots: the use of Arabidopsis thaliana. Journal of Experimental Botany, 1998, 49, 593-597.	4.8	34
89	Epidermal patterning genes are active during embryogenesis in Arabidopsis. Development (Cambridge), 2003, 130, 2893-2901.	2.5	34
90	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biology, 2019, 17, e3000560.	5.6	34

#	Article	IF	CITATIONS
91	NADPH oxidase involvement in cellular integrity. Planta, 2008, 227, 1415-1418.	3.2	32
92	RSL class I genes positively regulate root hair development in Oryza sativa. New Phytologist, 2017, 213, 314-323.	7.3	32
93	Rhynie chert fossils demonstrate the independent origin and gradual evolution of lycophyte roots. Current Opinion in Plant Biology, 2019, 47, 119-126.	7.1	31
94	Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants. ELife, 2018, 7, .	6.0	31
95	Pointing roots in the right direction: the role of auxin transport in response toÂgravity. Genes and Development, 1998, 12, 2091-2095.	5.9	29
96	MpFEW RHIZOIDS1 miRNA-Mediated Lateral Inhibition Controls Rhizoid Cell Patterning in Marchantia polymorpha. Current Biology, 2020, 30, 1905-1915.e4.	3.9	29
97	An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity During Tip Growth. Current Biology, 2019, 29, 3899-3908.e3.	3.9	27
98	Fifteen compelling open questions in plant cell biology. Plant Cell, 2022, 34, 72-102.	6.6	27
99	Unique Cellular Organization in the Oldest Root Meristem. Current Biology, 2016, 26, 1629-1633.	3.9	26
100	The Okra leaf shape mutation in cotton is active in all cell layers of the leaf. American Journal of Botany, 1998, 85, 322-327.	1.7	25
101	Functional <scp>PTB</scp> phosphate transporters are present in streptophyte algae and early diverging land plants. New Phytologist, 2017, 214, 1158-1171.	7.3	25
102	Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant, 2021, 14, 838-846.	8.3	24
103	Plant development: pulled up by the roots. Current Opinion in Genetics and Development, 1995, 5, 432-438.	3.3	23
104	Import of precursor proteins intoVicia fabamitochondria. FEBS Letters, 1988, 236, 217-220.	2.8	22
105	Development of the root pole and cell patterning in Arabidopsis roots. Current Opinion in Genetics and Development, 2000, 10, 405-409.	3.3	22
106	Threeâ€dimensional modelling of wheat endosperm development. New Phytologist, 2005, 168, 253-262.	7.3	21
107	A streamlined method for systematic, high resolution in situ analysis of mRNA distribution in plants. Plant Methods, 2005, 1, 8.	4.3	21
108	Root hair development in grasses and cereals (Poaceae). Current Opinion in Genetics and Development, 2017, 45, 76-81.	3.3	21

#	Article	IF	CITATIONS
109	Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170042.	4.0	21
110	Immunolabelling of cell surfaces ofArabidopsis thalianaroots following infection byMeloidogyne incognita(Nematoda). Journal of Experimental Botany, 1995, 46, 1711-1720.	4.8	20
111	The nucleus: a highly organized but dynamic structure. Journal of Microscopy, 2000, 198, 199-207.	1.8	20
112	Growth regulation in tip-growing cells that develop on the epidermis. Current Opinion in Plant Biology, 2016, 34, 77-83.	7.1	20
113	Multiple origins of dichotomous and lateral branching during root evolution. Nature Plants, 2020, 6, 454-459.	9.3	19
114	Root pattern: Shooting in the dark?. Seminars in Cell and Developmental Biology, 1998, 9, 201-206.	5.0	18
115	Pointing <scp>PIN</scp> s in the right directions: a potassium transporter is required for the polar localization of auxin efflux carriers. New Phytologist, 2013, 197, 1027-1028.	7.3	18
116	Neofunctionalisation of basic helixâ^'loopâ^'helix proteins occurred when embryophytes colonised the land. New Phytologist, 2019, 223, 993-1008.	7.3	18
117	Scarecrow: Specifying asymmetric cell divisions throughout development. Trends in Plant Science, 1997, 2, 1-2.	8.8	17
118	An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert. ELife, 2021, 10, .	6.0	15
119	Effects of elevated CO2 on cellular mechanisms, growth and development of trees with particular reference to hybrid poplar. Forestry, 1995, 68, 379-390.	2.3	14
120	The <i>New Phytologist</i> Tansley medal 2011. New Phytologist, 2012, 193, 821-822.	7.3	14
121	The <i>New Phytologist</i> Tansley Medal 2012. New Phytologist, 2013, 197, 1025-1026.	7.3	11
122	Reactive Oxygen Species in Growth and Development. Signaling and Communication in Plants, 2009, , 43-53.	0.7	11
123	Two ways to skin a plant: The analysis of root and shoot epidermal development inArabidopsis. BioEssays, 1995, 17, 865-872.	2.5	10
124	Signalling in cell type specification. Seminars in Cell and Developmental Biology, 1999, 10, 149-156.	5.0	10
125	The <i>New Phytologist</i> Tansley Medals 2013. New Phytologist, 2014, 201, 1077-1078.	7.3	10
126	Evolution: Diversification of Angiosperm Rooting Systems in the Early Cretaceous. Current Biology, 2019, 29, R1081-R1083.	3.9	10

#	Article	IF	CITATIONS
127	Evolutionary and Functional Analysis of a Chara Plasma Membrane H+-ATPase. Frontiers in Plant Science, 2019, 10, 1707.	3.6	10
128	PLANT SCIENCE: SCARECROWs at the Border. Science, 2007, 316, 377-378.	12.6	9
129	Proximal–distal patterns of transcription factor gene expression during Arabidopsis root development. Journal of Experimental Botany, 2008, 59, 235-245.	4.8	9
130	The <i>New Phytologist</i> Tansley Medal 2014. New Phytologist, 2015, 205, 951-952.	7.3	9
131	Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modified leaves. Scientific Reports, 2020, 10, 21547.	3.3	9
132	Microtubule associated protein WAVE DAMPENED2-LIKE (WDL) controls microtubule bundling and the stability of the site of tip-growth in Marchantia polymorpha rhizoids. PLoS Genetics, 2021, 17, e1009533.	3.5	9
133	Pattern in the Root Epidermis: An Interplay of Diffusible Signals and Cellular Geometry. Annals of Botany, 1996, 77, 547-553.	2.9	9
134	The <i>New Phytologist</i> Tansley Medal 2015. New Phytologist, 2016, 210, 5-5.	7.3	8
135	Root patterning: SHORT ROOT on the move. Current Biology, 2001, 11, R983-R985.	3.9	7
136	Chromatin and Arabidopsis root development. Seminars in Cell and Developmental Biology, 2008, 19, 580-585.	5.0	7
137	Meristems: The Root of Stem Cell Regulation. Current Biology, 2009, 19, R459-R460.	3.9	6
138	The <i>New Phytologist</i> Tansley Medal 2016. New Phytologist, 2017, 213, 1561-1561.	7.3	6
139	The <i>New Phytologist</i> Tansley Medal 2017. New Phytologist, 2018, 219, 5-5.	7.3	6
140	In situ Analysis of Gene Expression in Plants. Methods in Molecular Biology, 2009, 513, 229-242.	0.9	5
141	Plant Evolution: TALES of Development. Cell, 2008, 133, 771-773.	28.9	4
142	A model system to study the effects of elevated CO2 on the developmental physiology of roots: the use of Arabidopsis thaliana. Journal of Experimental Botany, 1998, 49, 593-597.	4.8	4
143	Genetic Interactions during Root Hair Morphogenesis in Arabidopsis. Plant Cell, 2000, 12, 1961.	6.6	3
144	The <i>New Phytologist</i> Tansley Medal 2018 – Liana Burghardt and Jana Sperschneider. New Phytologist, 2020, 228, 5-5.	7.3	3

#	Article	IF	CITATIONS
145	The <i>New Phytologist</i> Tansley Medal 2019 – Philippa Borrill and Kai Zhu. New Phytologist, 2020, 228, 1697-1697.	7.3	2
146	Plant Evolution: An Ancient Mechanism Protects Plants and Algae from Heat Stress. Current Biology, 2020, 30, R277-R278.	3.9	2
147	The <i>New Phytologist</i> Tansley Medal 2021 – MichaÅ, Bogdziewicz and Anna T. Trugman. New Phytologist, 2022, 234, 5-6.	7.3	2
148	Plant development: The benefits of a change of scene. Current Biology, 2001, 11, R702-R704.	3.9	1
149	Root Epidermal Development inArabidopsis. , 0, , 64-82.		1
150	Symmetric Development: Transcriptional Regulation of Symmetry Transition in Plants. Current Biology, 2014, 24, R1172-R1174.	3.9	1
151	Introducing Tansley insights – short and timely, focussed reviews within the plant sciences. New Phytologist, 2015, 205, 953-954.	7.3	1
152	Root Development in Arabidopsis. , 1999, , 133-144.		1
153	The <i>New Phytologist</i> Tansley Medal 2020 – Tommaso Jucker. New Phytologist, 2022, 233, 583-584.	7.3	1
154	Liam Dolan. Current Biology, 2016, 26, R85-R86.	3.9	0
155	Dedication: Nigel Trewin (1944–2017). Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170365.	4.0	0
156	The Development of Cell Pattern in the Arabidopsis Root Epidermis. , 2003, , 129-137.		0
157	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
158	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
159	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
160	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
161	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
162	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0