Robert Debuchy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758257/publications.pdf

Version: 2024-02-01

218677 254184 2,372 45 26 citations h-index papers

43 g-index 47 47 47 1989 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Population genomics of apricots unravels domestication history and adaptive events. Nature Communications, 2021, 12, 3956.	12.8	45
2	RNAi-Related Dicer and Argonaute Proteins Play Critical Roles for Meiocyte Formation, Chromosome-Axes Lengths and Crossover Patterning in the Fungus Sordaria macrospora. Frontiers in Cell and Developmental Biology, 2021, 9, 684108.	3.7	5
3	Comparative genomics applied to Mucor species with different lifestyles. BMC Genomics, 2020, 21, 135.	2.8	23
4	The taxonomy of the model filamentous fungus Podospora anserina. MycoKeys, 2020, 75, 51-69.	1.9	6
5	A RID-like putative cytosine methyltransferase homologue controls sexual development in the fungus Podospora anserina. PLoS Genetics, 2019, 15, e1008086.	3 . 5	16
6	The mitochondrial translocase of the inner membrane PaTim54 is involved in defense response and longevity in Podospora anserina. Fungal Genetics and Biology, 2019, 132, 103257.	2.1	4
7	Whole-genome sequencing reveals recent and frequent genetic recombination between clonal lineages of Cryphonectria parasitica in western Europe. Fungal Genetics and Biology, 2019, 130, 122-133.	2.1	16
8	Building bridges to move recombination complexes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12400-12409.	7.1	39
9	Population Genome Sequencing of the Scab Fungal Species <i>Venturia inaequalis</i> , <i>Venturia pirina</i> , <i>Venturia aucupariae</i> and <i>Venturia asperata</i> . G3: Genes, Genomes, Genetics, 2019, 9, 2405-2414.	1.8	33
10	A gene graveyard in the genome of the fungus Podospora comata. Molecular Genetics and Genomics, 2019, 294, 177-190.	2.1	29
11	PaPro1 and IDC4, Two Genes Controlling Stationary Phase, Sexual Development and Cell Degeneration in Podospora anserina. Journal of Fungi (Basel, Switzerland), 2018, 4, 85.	3.5	19
12	Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes and Development, 2017, 31, 1880-1893.	5.9	62
13	Inositol-phosphate signaling as mediator for growth and sexual reproduction in Podospora anserina. Developmental Biology, 2017, 429, 285-305.	2.0	6
14	Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. Current Biology, 2015, 25, 2562-2569.	3.9	110
15	Maintaining Two Mating Types: Structure of the Mating Type Locus and Its Role in Heterokaryosis in <i>Podospora anserina </i> . Genetics, 2014, 197, 421-432.	2.9	69
16	Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nature Communications, 2014, 5, 2876.	12.8	195
17	<pre><scp>IS<i>Dra</i></scp><i>2</i>fi> transposition in <scp><i>D</i></scp><i>einococcus radiodurans</i> is downregulated by <scp>TnpB</scp>. Molecular Microbiology, 2013, 88, 443-455.</pre>	2.5	46
18	A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina. PLoS Genetics, 2013, 9, e1003642.	3.5	58

#	Article	IF	CITATIONS
19	Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body. PLoS ONE, 2012, 7, e37488.	2.5	37
20	Genome-Wide Gene Expression Profiling of Fertilization Competent Mycelium in Opposite Mating Types in the Heterothallic Fungus Podospora anserina. PLoS ONE, 2011, 6, e21476.	2.5	51
21	The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway. Molecular Microbiology, 2011, 82, 365-377.	2.5	50
22	A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina. BMC Research Notes, 2010, 3, 171.	1.4	16
23	Tracing the Origin of the Fungal $\hat{l}\pm 1$ Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution. PLoS ONE, 2010, 5, e15199.	2.5	93
24	Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Current Genetics, 2008, 53, 249-258.	1.7	102
25	The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biology, 2008, 9, R77.	9.6	301
26	Mutations in mating-type genes greatly decrease repeat-induced point mutation process in the fungus Podospora anserina. Fungal Genetics and Biology, 2008, 45, 207-220.	2.1	9
27	IDC1, a Pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 2007, 44, 1219-1230.	2.1	53
28	The Function of the Coding Sequences for the Putative Pheromone Precursors in Podospora anserina Is Restricted to Fertilization. Eukaryotic Cell, 2005, 4, 407-420.	3.4	70
29	Altering a Gene Involved in Nuclear Distribution Increases the Repeat-Induced Point Mutation Process in the Fungus Podospora anserina. Genetics, 2004, 167, 151-159.	2.9	29
30	Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genetics and Biology, 2003, 39, 250-263.	2.1	25
31	pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserina. Molecular Microbiology, 2001, 39, 54-64.	2.5	51
32	Mutations in Mating-Type Genes of the Heterothallic Fungus <i>Podospora anserina</i> Lead to Self-Fertility. Genetics, 2001, 159, 545-556.	2.9	32
33	Co-expression of the Mating-Type Genes Involved in Internuclear Recognition Is Lethal in Podospora anserina. Genetics, 2000, 155, 657-669.	2.9	73
34	Internuclear Recognition: A Possible Connection between Euascomycetes and Homobasidiomycetes. Fungal Genetics and Biology, 1999, 27, 218-223.	2.1	56
35	A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO Journal, 1998, 17, 1248-1258.	7.8	56
36	What is a. Molecular Genetics and Genomics, 1997, 256, 169.	2.4	2

3

#	Article	IF	CITATIONS
37	The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Molecular Genetics and Genomics, 1993, 241-241, 667-673.	2.4	96
38	The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Molecular Genetics and Genomics, 1992, 233, 113-121.	2.4	113
39	Studies on the maintenance and expression of cloned DNA fragments in the nuclear genome of the green alga Chlamydomonas Reinhardtii. Physiologia Plantarum, 1990, 78, 254-260.	5. 2	37
40	Studies on the maintenance and expression of cloned DNA fragments in the nuclear genome of the green alga Chlamydomonas reinhardtii. Physiologia Plantarum, 1990, 78, 254-260.	5. 2	29
41	Chromosome walking towards a centromere in the filamentous fungus Podospora anserina: cloning of a sequence lethal at a two-copy state. Current Genetics, 1988, 13, 105-111.	1.7	14
42	Transformation by integration in Podospora anserina. Molecular Genetics and Genomics, 1987, 210, 129-134.	2.4	32
43	Transformation by integration in Podospora anserina. Molecular Genetics and Genomics, 1985, 200, 128.	2.4	56
44	Mating Systems and Sexual Morphogenesis in Ascomycetes. , 0, , 499-535.		99
45	Cochliobolus and Podospora: Mechanisms of Sex Determination and the Evolution of Reproductive Lifestyle., 0,, 91-121.		6