Vasileios Fotopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757835/publications.pdf Version: 2024-02-01

		53794	53230
96	7,819	45	85
papers	citations	h-index	g-index
112 all docs	112 docs citations	112 times ranked	7522 citing authors

#	Article	IF	CITATIONS
1	New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia Plantarum, 2022, 174, .	5.2	38
2	Effects of biochar derived from the pyrolysis of either biosolids, manure or spent coffee grounds on the growth, physiology and quality attributes of field-grown lettuce plants. Environmental Technology and Innovation, 2022, 26, 102263.	6.1	10
3	Melatonin delays darkâ€induced leaf senescence by inducing <i>miR171b</i> expression in tomato. Journal of Pineal Research, 2022, 72, .	7.4	22
4	Safeguarding food security: Hormesis-based plant priming to the rescue. Current Opinion in Environmental Science and Health, 2022, 28, 100374.	4.1	5
5	Transgenerational hormesis: What do parents sacrifice for their offspring?. Current Opinion in Environmental Science and Health, 2022, 29, 100380.	4.1	10
6	Regulation of ascorbate-glutathione cycle by exogenous nitric oxide and hydrogen peroxide in soybean roots under arsenate stress. Journal of Hazardous Materials, 2021, 409, 123686.	12.4	59
7	Uptake of hexavalent chromium by Lactuca sativa and Triticum aestivum plants and mediated effects on their performance, linked with associated public health risks. Chemosphere, 2021, 267, 128912.	8.2	20
8	Involvement of Polyamine Metabolism in the Response of Medicago truncatula Genotypes to Salt Stress. Plants, 2021, 10, 269.	3.5	15
9	Systems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of Medicago truncatula plant genotypes to salt stress. Computational and Structural Biotechnology Journal, 2021, 19, 2133-2147.	4.1	15
10	Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. â€~Sultana') against salt stress. BMC Plant Biology, 2021, 21, 120.	3.6	48
11	Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environmental Science and Pollution Research, 2021, 28, 42877-42890.	5.3	37
12	Tissue-specific elucidation of lycopene metabolism in commercial tomato fruit cultivars during ripening. Scientia Horticulturae, 2021, 284, 110144.	3.6	6
13	Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. International Journal of Molecular Sciences, 2021, 22, 7118.	4.1	36
14	Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. Ecotoxicology and Environmental Safety, 2021, 220, 112402.	6.0	31
15	Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysis. Environmental Research, 2021, 200, 111746.	7.5	29
16	Uptake of hexavalent chromium by tomato (Solanum lycopersicum L.) plants and mediated effects on their physiology and productivity, along with fruit quality and safety. Environmental and Experimental Botany, 2021, 189, 104564.	4.2	13
17	Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells, 2021, 10, 2537.	4.1	84
18	Immobilized Ag-nanoparticles (iNPs) for environmental applications: Elucidation of immobilized silver-induced inhibition mechanism of Escherichia coli. Journal of Environmental Chemical Engineering, 2021, 9, 106001.	6.7	4

#	Article	IF	CITATIONS
19	The efficacy of acetylsalicylic acid, spermidine and calcium preharvest foliar spray applications on yield efficiency, incidence of physiological disorders and shelf-life performance of loquat fruit. Scientia Horticulturae, 2021, 289, 110439.	3.6	6
20	Functionalized Magnetic Nanomaterials in Agricultural Applications. Nanomaterials, 2021, 11, 3106.	4.1	28
21	The physiological disorder of purple spot in loquat fruit: etiology, possible causes and mitigation measures. Acta Horticulturae, 2021, , 577-582.	0.2	0
22	Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of <i>Ocimum basilicum</i> L. against salt stress. Physiologia Plantarum, 2020, 168, 361-373.	5.2	68
23	Comprehensive approaches reveal key transcripts and metabolites highlighting metabolic diversity among three oriental tobacco varieties. Industrial Crops and Products, 2020, 143, 111933.	5.2	21
24	Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa) Tj ETQqO 0 0 Environmental Pollution, 2020, 267, 115379.	rgBT /Ove 7.5	rlock 10 Tf 5 33
25	Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 2020, 9, 681.	5.1	1,288
26	Dissection of the incidence and severity of purple spot physiological disorder in loquat fruit through a physiological and molecular approach. Plant Physiology and Biochemistry, 2020, 155, 980-986.	5.8	9
27	Response to stress and allergen production caused by metal ions (Ni, Cu and Zn) in oregano (Origanum vulgare L.) plants. Journal of Biotechnology, 2020, 324, 171-182.	3.8	10
28	Impact of an arbuscular mycorrhizal fungal inoculum and exogenous MeJA on fenugreek secondary metabolite production under water deficit. Environmental and Experimental Botany, 2020, 176, 104096.	4.2	23
29	Linking integrative plant physiology with agronomy to sustain future plant production. Environmental and Experimental Botany, 2020, 178, 104125.	4.2	6
30	Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 2020, 10, 912.	3.3	289
31	Primary Metabolism in Fresh Fruits During Storage. Frontiers in Plant Science, 2020, 11, 80.	3.6	103
32	Hydrogen sulfide and nitric oxide signal integration and plant development under stressed/nonâ€stressed conditions. Physiologia Plantarum, 2020, 168, 239-240.	5.2	58
33	Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere, 2020, 249, 126171.	8.2	76
34	Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in Medicago sativa Plants. Biomolecules, 2020, 10, 120.	4.0	70
35	Advanced nanomaterials in agriculture under a changing climate: The way to the future?. Environmental and Experimental Botany, 2020, 176, 104048.	4.2	60
36	The diverse roles of vitamin E, its occurrence and regulation in different plant tissues. Żywność, 2020, 125, 113-126.	0.1	2

#	Article	IF	CITATIONS
37	Uptake and bioaccumulation of three widely prescribed pharmaceutically active compounds in tomato fruits and mediated effects on fruit quality attributes. Science of the Total Environment, 2019, 647, 1169-1178.	8.0	36
38	Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. Frontiers in Plant Science, 2019, 10, 427.	3.6	67
39	Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. Environmental Research, 2019, 170, 422-432.	7.5	127
40	Genotypeâ€dependent regulation of vitamin E biosynthesis in olive fruits as revealed through metabolic and transcriptional profiles. Plant Biology, 2019, 21, 604-614.	3.8	11
41	Can the pharmaceutically active compounds released in agroecosystems be considered as emerging plant stressors?. Environment International, 2018, 114, 360-364.	10.0	73
42	Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. Journal of Agricultural Science, 2018, 156, 680-688.	1.3	49
43	Spectrophotometric Quantification of Reactive Oxygen, Nitrogen and Sulfur Species in Plant Samples. Methods in Molecular Biology, 2018, 1694, 155-161.	0.9	5
44	Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta, 2018, 247, 573-585.	3.2	62
45	Hydrogen Sulfide: A Potent Tool in Postharvest Fruit Biology and Possible Mechanism of Action. Frontiers in Plant Science, 2018, 9, 1375.	3.6	77
46	Two Inexpensive and Non-destructive Techniques to Correct for Smaller-Than-Gasket Leaf Area in Gas Exchange Measurements. Frontiers in Plant Science, 2018, 9, 548.	3.6	9
47	Influence of Heavy Metals (Ni, Cu, and Zn) on Nitro-Oxidative Stress Responses, Proteome Regulation and Allergen Production in Basil (Ocimum basilicum L.) Plants. Frontiers in Plant Science, 2018, 9, 862.	3.6	108
48	Spatial response of Medicago truncatula plants to drought and spider mite attack. Plant Physiology and Biochemistry, 2018, 130, 658-662.	5.8	6
49	<i>Polyamine oxidase 5</i> lossâ€ofâ€function mutations in <i>Arabidopsis thaliana</i> trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell and Environment, 2017, 40, 527-542.	5.7	66
50	Polyamines: Emerging Hubs Promoting Drought and Salt Stress Tolerance in Plants. Current Molecular Biology Reports, 2017, 3, 28-36.	1.6	55
51	Melatonin systemically ameliorates drought stressâ€induced damage in <i><scp>M</scp>edicago sativa</i> plants by modulating nitroâ€oxidative homeostasis and proline metabolism. Journal of Pineal Research, 2017, 62, e12401.	7.4	244
52	Strobilurins as growthâ€promoting compounds: how Stroby regulates Arabidopsis leaf growth. Plant, Cell and Environment, 2017, 40, 1748-1760.	5.7	21
53	Potential Role of Beneficial Soil Microorganisms in Plant Tolerance to Abiotic Stress Factors. , 2017, , 191-207.		8
54	Deciphering the interplay among genotype, maturity stage and low-temperature storage on phytochemical composition and transcript levels of enzymatic antioxidants in Prunus persica fruit. Plant Physiology and Biochemistry, 2017, 119, 189-199.	5.8	14

#	Article	IF	CITATIONS
55	The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteriaÂand resistance genes – A review. Water Research, 2017, 123, 448-467.	11.3	400
56	Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development. BMC Plant Biology, 2017, 17, 102.	3.6	40
57	Global Metabolic Profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4) Loss-of-Function Mutants Exhibiting Delayed Dark-Induced Senescence. Frontiers in Plant Science, 2016, 7, 173.	3.6	41
58	Regulation of On-Tree Vitamin E Biosynthesis in Olive Fruit during Successive Growing Years: The Impact of Fruit Development and Environmental Cues. Frontiers in Plant Science, 2016, 7, 1656.	3.6	24
59	Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants. Science of the Total Environment, 2016, 557-558, 652-664.	8.0	77
60	Unravelling chemical priming machinery in plants: the role of reactive oxygen–nitrogen–sulfur species in abiotic stress tolerance enhancement. Current Opinion in Plant Biology, 2016, 33, 101-107.	7.1	104
61	Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?. Trends in Plant Science, 2016, 21, 329-340.	8.8	467
62	Kresoxim-methyl primes <i>Medicago truncatula</i> plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment. Journal of Experimental Botany, 2016, 67, 1259-1274.	4.8	33
63	Temporal analysis reveals a key role for VTE5 in vitamin E biosynthesis in olive fruit during on-tree development. Frontiers in Plant Science, 2015, 6, 871.	3.6	15
64	REVIEW ARTICLE Hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops. Journal of Horticultural Science and Biotechnology, 2015, 90, 227-234.	1.9	49
65	Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. Plant Molecular Biology, 2015, 89, 433-450.	3.9	84
66	Investigating Correlation among NDVI Index Derived by Unmanned Aerial Vehicle Photography and Grain Yield under Late Drought Stress Conditions. Procedia Environmental Sciences, 2015, 29, 225-226.	1.4	34
67	Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant, Cell and Environment, 2014, 37, 864-885.	5.7	173
68	Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biology, 2014, 14, 42.	3.6	165
69	Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops. Gene, 2014, 537, 169-173.	2.2	19
70	Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 2014, 97, 1-10.	4.2	165
71	Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. Journal of Plant Physiology, 2014, 171, 1740-1747.	3.5	50
72	Application of sodium nitroprusside results in distinct antioxidant gene expression patterns in leaves of mature and senescing Medicago truncatula plants. Protoplasma, 2014, 251, 973-978.	2.1	10

#	Article	IF	CITATIONS
73	Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environmental and Experimental Botany, 2014, 107, 46-54.	4.2	84
74	The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radical Biology and Medicine, 2013, 56, 172-183.	2.9	116
75	Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiology and Biochemistry, 2013, 68, 118-126.	5.8	111
76	Altered apoplastic ascorbate redox state in tobacco plants via ascorbate oxidase overexpression results in delayed dark-induced senescence in detached leaves. Plant Physiology and Biochemistry, 2013, 73, 154-160.	5.8	37
77	Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance. Journal of Plant Physiology, 2013, 170, 111-114.	3.5	50
78	Proteomics in the fruit tree science arena: New insights into fruit defense, development, and ripening. Proteomics, 2013, 13, 1871-1884.	2.2	67
79	Plant Acclimation to Environmental Stress Using Priming Agents. , 2013, , 1-27.		22
80	Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. Journal of Experimental Botany, 2013, 64, 1953-1966.	4.8	304
81	Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of <i><i>Medicago truncatula </i> </i> plants. Plant Signaling and Behavior, 2013, 8, e25479.	2.4	35
82	Never say dye. Plant Signaling and Behavior, 2012, 7, 342-344.	2.4	3
83	Oxidative and nitrosativeâ€based signaling and associated postâ€translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant Journal, 2012, 72, 585-599.	5.7	255
84	Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives. Frontiers in Plant Science, 2012, 3, 216.	3.6	92
85	NO loading: Efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiology and Biochemistry, 2012, 60, 115-118.	5.8	26
86	Antioxidant gene–enzyme responses in <i>Medicago truncatula</i> genotypes with different degree of sensitivity to salinity. Physiologia Plantarum, 2011, 141, 201-214.	5.2	69
87	Effect of drought and rewatering on the cellular status and antioxidant response of <i>Medicago truncatula </i> plants. Plant Signaling and Behavior, 2011, 6, 270-277.	2.4	103
88	Oxidative and nitrosative signaling in plants. Plant Signaling and Behavior, 2011, 6, 210-214.	2.4	116
89	Involvement of AsA/DHA and CSH/CSSC Ratios in Gene and Protein Expression and in the Activation of Defence Mechanisms Under Abiotic Stress Conditions. , 2010, , 265-302.		45
90	Behaviours of <i>Medicago truncatula–Sinorhizobium meliloti</i> Symbioses Under Osmotic Stress in Relation with the Symbiotic Partner Input: Effects on Nodule Functioning and Protection. Journal of Agronomy and Crop Science, 2009, 195, 225-231.	3.5	28

#	Article	IF	CITATIONS
91	Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SINAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. Journal of Experimental Botany, 2009, 60, 1859-1871.	4.8	100
92	Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus. Plant Molecular Biology, 2008, 68, 633-651.	3.9	41
93	Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. Journal of Experimental Botany, 2008, 59, 729-737.	4.8	103
94	Isolation, cloning and expression analysis of EcPMA1, a putative plasma membrane H+-ATPase transporter gene from the biotrophic pathogenic fungus Erysiphe cichoracearum. Mycological Research, 2006, 110, 28-37.	2.5	3
95	Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. Journal of Experimental Botany, 2006, 57, 3933-3943.	4.8	87
96	The Monosaccharide Transporter Gene, AtSTP4, and the Cell-Wall Invertase, Atβfruct1, Are Induced in Arabidopsis during Infection with the Fungal Biotroph Erysiphe cichoracearum Â. Plant Physiology, 2003, 132, 821-829.	4.8	222