James G Tidball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7756712/publications.pdf Version: 2024-02-01

IAMESÂC TIDRALL

#	Article	IF	CITATIONS
1	The antiâ€aging protein Klotho affects early postnatal myogenesis by downregulating Jmjd3 and the canonical Wnt pathway. FASEB Journal, 2022, 36, e22192.	0.5	5
2	Wnt-induced, TRP53-mediated Cell Cycle Arrest of Precursors Underlies Interstitial Cell of Cajal Depletion During Aging. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 117-145.	4.5	9
3	Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis. Experimental Gerontology, 2021, 145, 111200.	2.8	26
4	Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro. Nature Biomedical Engineering, 2021, 5, 864-879.	22.5	23
5	Myeloid cell-mediated targeting of LIF to dystrophic muscle causes transient increases in muscle fiber lesions by disrupting the recruitment and dispersion of macrophages in muscle. Human Molecular Genetics, 2021, 31, 189-206.	2.9	2
6	Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. Experimental Physiology, 2020, 105, 132-147.	2.0	20
7	Differential Effects of Myeloid Cell PPARδ and IL-10 in Regulating Macrophage Recruitment, Phenotype, and Regeneration following Acute Muscle Injury. Journal of Immunology, 2020, 205, 1664-1677.	0.8	18
8	Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia. FASEB Journal, 2019, 33, 1415-1427.	0.5	62
9	Targeting a therapeutic LIF transgene to muscle via the immune system ameliorates muscular dystrophy. Nature Communications, 2019, 10, 2788.	12.8	16
10	Macrophages escape Klotho gene silencing in the mdx mouse model of Duchenne muscular dystrophy and promote muscle growth and increase satellite cell numbers through a Klotho-mediated pathway. Human Molecular Genetics, 2018, 27, 14-29.	2.9	37
11	Immunobiology of Inherited Muscular Dystrophies. , 2018, 8, 1313-1356.		99
12	Myeloid cellâ€derived tumor necrosis factorâ€elpha promotes sarcopenia and regulates muscle cell fusion with aging muscle fibers. Aging Cell, 2018, 17, e12828.	6.7	51
13	Regulation of muscle growth and regeneration by the immune system. Nature Reviews Immunology, 2017, 17, 165-178.	22.7	489
14	Klotho gene silencing promotes pathology in the <i>mdx</i> mouse model of Duchenne muscular dystrophy. Human Molecular Genetics, 2016, 25, ddw111.	2.9	34
15	Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy. Human Molecular Genetics, 2016, 25, ddw331.	2.9	15
16	Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscleâ€derived nitric oxide. Aging Cell, 2015, 14, 678-688.	6.7	149
17	Shifts in macrophage cytokine production drive muscle fibrosis. Nature Medicine, 2015, 21, 665-666.	30.7	21
18	Macrophage-Derived IGF-1 Is a Potent Coordinator of Myogenesis and Inflammation in Regenerating Muscle. Molecular Therapy, 2015, 23, 1134-1135.	8.2	41

#	Article	IF	CITATIONS
19	Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy. Journal of Physiology, 2014, 592, 4627-4638.	2.9	39
20	Purloined Mechanisms of Bacterial Immunity Can Cure Muscular Dystrophy. Cell Metabolism, 2014, 20, 927-929.	16.2	1
21	Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Science Translational Medicine, 2014, 6, 258ra142.	12.4	193
22	Shared signaling systems in myeloid cell-mediated muscle regeneration. Development (Cambridge), 2014, 141, 1184-1196.	2.5	125
23	IL-10 Triggers Changes in Macrophage Phenotype That Promote Muscle Growth and Regeneration. Journal of Immunology, 2012, 189, 3669-3680.	0.8	380
24	Ageâ€related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain <i>S</i> â€nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell, 2012, 11, 1036-1045.	6.7	77
25	Immunological Responses to Muscle Injury. , 2012, , 899-909.		8
26	p38 ^{ĵ3} activity is required for maintenance of slow skeletal muscle size. Muscle and Nerve, 2012, 45, 266-273.	2.2	17
27	Mechanisms of Muscle Injury, Repair, and Regeneration. , 2011, 1, 2029-2062.		296
28	Neuronal Nitric Oxide Synthase-Rescue of Dystrophin/Utrophin Double Knockout Mice does not Require nNOS Localization to the Cell Membrane. PLoS ONE, 2011, 6, e25071.	2.5	30
29	Role of superoxide–nitric oxide interactions in the accelerated ageâ€related loss of muscle mass in mice lacking Cu,Zn superoxide dismutase. Aging Cell, 2011, 10, 749-760.	6.7	57
30	Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Human Molecular Genetics, 2011, 20, 790-805.	2.9	248
31	IFN-γ Promotes Muscle Damage in the <i>mdx</i> Mouse Model of Duchenne Muscular Dystrophy by Suppressing M2 Macrophage Activation and Inhibiting Muscle Cell Proliferation. Journal of Immunology, 2011, 187, 5419-5428.	0.8	125
32	Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1173-R1187.	1.8	859
33	Arginine Metabolism by Macrophages Promotes Cardiac and Muscle Fibrosis in mdx Muscular Dystrophy. PLoS ONE, 2010, 5, e10763.	2.5	109
34	Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Human Molecular Genetics, 2009, 18, 3439-3451.	2.9	50
35	Nitric oxide generated by muscle corrects defects in hippocampal neurogenesis and neural differentiation caused by muscular dystrophy. Journal of Physiology, 2009, 587, 1769-1778.	2.9	23
36	NO may prompt calcium leakage in dystrophic muscle. Nature Medicine, 2009, 15, 243-244.	30.7	12

#	Article	IF	CITATIONS
37	<i>Muscleblindâ€like 2</i> (<i>Mbnl2</i>) â€deficient mice as a model for myotonic dystrophy. Developmental Dynamics, 2008, 237, 403-410.	1.8	56
38	Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy. Human Molecular Genetics, 2008, 17, 2280-2292.	2.9	76
39	Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Human Molecular Genetics, 2008, 18, 482-496.	2.9	413
40	Inflammation in Skeletal Muscle Regeneration. , 2008, , 243-268.		16
41	The role of free radicals in the pathophysiology of muscular dystrophy. Journal of Applied Physiology, 2007, 102, 1677-1686.	2.5	192
42	Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. Journal of Clinical Investigation, 2007, 117, 889-901.	8.2	382
43	Patient survival by Hsp70 membrane phenotype. Cancer, 2007, 110, 926-935.	4.1	91
44	Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in micein vivo. Journal of Physiology, 2007, 578, 327-336.	2.9	318
45	Damage and inflammation in muscular dystrophy: potential implications and relationships with autoimmune myositis. Current Opinion in Rheumatology, 2005, 17, 707-713.	4.3	77
46	Null mutation of myeloperoxidase in mice prevents mechanical activation of neutrophil lysis of muscle cell membranesin vitroandin vivo. Journal of Physiology, 2005, 565, 403-413.	2.9	57
47	Inflammatory processes in muscle injury and repair. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R345-R353.	1.8	1,021
48	Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium. Human Molecular Genetics, 2005, 14, 1921-1933.	2.9	137
49	Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology, 2005, 98, 1900-1908.	2.5	133
50	Defects in neuromuscular junction structure in dystrophic muscle are corrected by expression of a NOS transgene in dystrophin-deficient muscles, but not in muscles lacking Â- and Â1-syntrophins. Human Molecular Genetics, 2004, 13, 1873-1884.	2.9	51
51	Evolving Therapeutic Strategies for Duchenne Muscular Dystrophy: Targeting Downstream Events. Pediatric Research, 2004, 56, 831-841.	2.3	88
52	Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins. Molecular Genetics and Metabolism, 2004, 82, 312-320.	1.1	52
53	Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscular Disorders, 2004, 14, 483-490.	0.6	76
54	Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use. Inflammation Research, 2003, 52, 170-176.	4.0	30

#	Article	IF	CITATIONS
55	Expression of a muscleâ€specific, nitric oxide synthase transgene prevents muscle membrane injury and reduces muscle inflammation during modified muscle use in mice. Journal of Physiology, 2003, 550, 347-356.	2.9	60
56	Null Mutation of gp91 phox Reduces Muscle Membrane Lysis During Muscle Inflammation in Mice. Journal of Physiology, 2003, 553, 833-841.	2.9	62
57	Skipping to new gene therapies for muscular dystrophy. Nature Medicine, 2003, 9, 997-998.	30.7	9
58	Kinematic modeling of single muscle fiber during diaphragm shortening. Journal of Biomechanics, 2003, 36, 457-461.	2.1	3
59	Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. Journal of Physiology, 2003, 547, 125-132.	2.9	118
60	Interactions Between Muscle and the Immune System During Modified Musculoskeletal Loading. Clinical Orthopaedics and Related Research, 2002, 403, S100-S109.	1.5	50
61	Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. Journal of Physiology, 2002, 545, 819-828.	2.9	181
62	Helper (CD4+) and Cytotoxic (CD8+) T Cells Promote the Pathology of Dystrophin-Deficient Muscle. Clinical Immunology, 2001, 98, 235-243.	3.2	237
63	Do immune cells promote the pathology of dystrophin-deficient myopathies?. Neuromuscular Disorders, 2001, 11, 556-564.	0.6	153
64	Desmin integrates the three-dimensional mechanical properties of muscles. American Journal of Physiology - Cell Physiology, 2001, 280, C46-C52.	4.6	80
65	A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. Journal of Cell Biology, 2001, 155, 123-132.	5.2	472
66	Modulation of myostatin expression during modified muscle use. FASEB Journal, 2000, 14, 103-110.	0.5	198
67	Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2000, 279, C806-C812.	4.6	128
68	Eosinophilia of Dystrophin-Deficient Muscle Is Promoted by Perforin-Mediated Cytotoxicity by T Cell Effectors. American Journal of Pathology, 2000, 156, 1789-1796.	3.8	89
69	Complement Activation Promotes Muscle Inflammation during Modified Muscle Use. American Journal of Pathology, 2000, 156, 2103-2110.	3.8	97
70	Calpains and muscular dystrophies. International Journal of Biochemistry and Cell Biology, 2000, 32, 1-5.	2.8	118
71	Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Letters, 2000, 474, 71-75.	2.8	193
72	Nitric-oxide Synthase Is a Mechanical Signal Transducer That Modulates Talin and Vinculin Expression. Journal of Biological Chemistry, 1999, 274, 33155-33160.	3.4	52

#	Article	IF	CITATIONS
73	Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. Journal of Physiology, 1999, 519, 189-196.	2.9	59
74	Macrophage invasion does not contribute to muscle membrane injury during inflammation. Journal of Leukocyte Biology, 1999, 65, 492-498.	3.3	103
75	Macrophage invasion does not contribute to muscle membrane injury during inflammation. Journal of Leukocyte Biology, 1999, 65, 492-8.	3.3	46
76	Sparing of mdx extraocular muscles from dystrophic pathology is not attributable to normalized concentration or distribution of neuronal nitric oxide synthase. Neuromuscular Disorders, 1998, 8, 22-29.	0.6	25
77	Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use. Journal of Leukocyte Biology, 1998, 64, 427-433.	3.3	40
78	Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. American Journal of Physiology - Cell Physiology, 1998, 275, C260-C266.	4.6	194
79	Mechanical loading regulates expression of talin and its mRNA, which are concentrated at myotendinous junctions. American Journal of Physiology - Cell Physiology, 1998, 275, C818-C825.	4.6	134
80	Absence of calpain 3 in a form of limb-girdle muscular dystrophy (LGMD2A). Journal of the Neurological Sciences, 1997, 146, 173-178.	0.6	41
81	Platelet-derived Growth Factor-stimulated Secretion of Basement Membrane Proteins by Skeletal Muscle Occurs by Tyrosine Kinase-dependent and -independent Pathways. Journal of Biological Chemistry, 1997, 272, 2236-2244.	3.4	19
82	Calpain II expression is increased by changes in mechanical loading of muscle in vivo. , 1997, 64, 55-66.		29
83	Calpain Translocation during Muscle Fiber Necrosis and Regeneration in Dystrophin-Deficient Mice. Experimental Cell Research, 1996, 226, 264-272.	2.6	39
84	Apoptosis of macrophages during the resolution of muscle inflammation. Journal of Leukocyte Biology, 1996, 59, 380-388.	3.3	57
85	Inflammatory cell response to acute muscle injury. Medicine and Science in Sports and Exercise, 1995, 27, 1022-1032.	0.4	390
86	Calpains Are Activated in Necrotic Fibers from mdx Dystrophic Mice. Journal of Biological Chemistry, 1995, 270, 10909-10914.	3.4	175
87	Modifications in Myotendinous Junction Surface Morphology in Dystrophin-Deficient Mouse Muscle. Experimental and Molecular Pathology, 1994, 61, 58-68.	2.1	22
88	Assembly of Myotendinous Junctions in the Chick Embryo: Deposition of P68 Is an Early Event in Myotendinous Junction Formation. Developmental Biology, 1994, 163, 447-456.	2.0	17
89	Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Experimental Cell Research, 1992, 203, 107-114.	2.6	50
90	PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle. Experimental Cell Research, 1992, 203, 141-149.	2.6	22

JamesÂG Tidball

#	Article	IF	CITATIONS
91	Desmin at myotendinous junctions. Experimental Cell Research, 1992, 199, 206-212.	2.6	70
92	Developmental modulation of embryonic cardiac myocyte adhesion to cardiac collagens in vitro. Experimental Cell Research, 1992, 199, 341-348.	2.6	6
93	Structure and protein composition of sites of papillary muscle attachment to chordae tendineae in avian hearts. Cell and Tissue Research, 1992, 270, 527-533.	2.9	10
94	Force transmission across muscle cell membranes. Journal of Biomechanics, 1991, 24, 43-52.	2.1	154
95	Quantitative analysis of regional variability in the distribution of transverse tubules in rabbit myocardium. Cell and Tissue Research, 1991, 264, 293-298.	2.9	34
96	Myonexin: An 80-kDa glycoprotein that binds fibronectin and is located at embryonic myotendinous junctions. Developmental Biology, 1990, 142, 103-114.	2.0	4
97	Cytochemical, histological, and phylogenetic distribution of a 38,000-dalton protein associated with transverse tubules. Journal of Cellular Biochemistry, 1988, 38, 99-112.	2.6	2
98	Alpha-actinin is absent from the terminal segments of myofibrils and from subsarcolemmal densities in frog skeletal muscle. Experimental Cell Research, 1987, 170, 469-482.	2.6	37
99	Myotendinous junction: Morphological changes and mechanical failure associated with muscle cell atrophy. Experimental and Molecular Pathology, 1984, 40, 1-12.	2.1	69
100	The geometry of actin filament-membrane associations can modify adhesive strength of the myotendinous junction. Cell Motility, 1983, 3, 439-447.	1.8	57
101	Fine structural aspects of anthozoan desmocyte development (Phylum Cnidaria). Tissue and Cell, 1982, 14, 85-96.	2.2	11
102	An ultrastructural and cytochemical analysis of the cellular basis for tyrosine-derived collagen crosslinks in Leptogorgia virgulata (Cnidaria: Gorgonacea). Cell and Tissue Research, 1982, 222, 635-45.	2.9	18