Daniel Olazábal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7756389/publications.pdf

Version: 2024-02-01

		1040056	1125743
13	647	9	13
papers	citations	h-index	g-index
13	13	13	594
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Variation in the density of oxytocin receptors in the brain as mechanism of adaptation to specific social and reproductive strategies. General and Comparative Endocrinology, 2020, 286, 113337.	1.8	10
2	Prefrontal cortex is associated with the rapid onset of parental behavior in inexperienced adult mice (C57BL/6). Behavioural Brain Research, 2020, 385, 112556.	2.2	7
3	Role of oxytocin in parental behaviour. Journal of Neuroendocrinology, 2018, 30, e12594.	2.6	19
4	Do sires and juvenile male mice (C57BL/6) contribute to the rearing of the offspring?. Acta Ethologica, 2018, 21, 185-193.	0.9	2
5	Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naA ve mice?. Hormones and Behavior, 2016, 77, 132-140.	2.1	25
6	Development and expression of maternal behavior in na \tilde{A} ve female C57BL/6 mice. Developmental Psychobiology, 2015, 57, 189-200.	1.6	27
7	Maternal behavior and early development of pampas deer (OzotocerosÂbezoarticus) fawns in a semi-captive environment. Journal of Ethology, 2013, 31, 323-330.	0.8	6
8	Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neuroscience and Biobehavioral Reviews, 2013, 37, 1875-1892.	6.1	80
9	Stability and potential inheritance of infanticidal behavior in prairie voles. Developmental Psychobiology, 2010, 52, 825-832.	1.6	1
10	Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Hormones and Behavior, 2006, 49, 681-687.	2.1	179
11	Oxytocin receptors in the nucleus accumbens facilitate "spontaneous―maternal behavior in adult female prairie voles. Neuroscience, 2006, 141, 559-568.	2.3	233
12	Juvenile Rats Show Reduced c-fos Activity in Neural Sites Associated With Aversion to Pups and Inhibition of Maternal Behavior Behavioral Neuroscience, 2005, 119, 1097-1110.	1.2	13
13	The content of dopamine, serotonin, and their metabolites in the neural circuit that mediates maternal behavior in juvenile and adult rats. Brain Research Bulletin, 2004, 63, 259-268.	3.0	45