Josà Marpani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7756303/publications.pdf

Version: 2024-02-01

623734 501196 69 937 14 28 citations h-index g-index papers 71 71 71 1036 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spraycoating of Nanocellulose Fibrilated (CNF) onto Glass Fiber and Carbon Fiber Fabrics and its Role as Hierarchical Reinforcement on GFRP and CFRP composites. Composite Interfaces, 2022, 29, 121-140.	2.3	3
2	Short-beam shear fatigue behavior of round curved pultruded composite. Mechanics of Advanced Materials and Structures, 2022, 29, 5579-5587.	2.6	2
3	Flexible Composite Films Made of EMAAâ^Na+ Ionomer: Evaluation of the Influence of Piezoelectric Particles on the Thermal and Mechanical Properties. Polymers, 2022, 14, 2755.	4.5	O
4	Using OBR for pressure monitoring and BVID detection in type IV composite overwrapped pressure vessels. Journal of Composite Materials, 2021, 55, 423-436.	2.4	11
5	A Deep Learning Method for the Impact Damage Segmentation of Curve-Shaped CFRP Specimens Inspected by Infrared Thermography. Sensors, 2021, 21, 395.	3.8	27
6	Detection and Imaging of Damages and Defects in Fibre-Reinforced Composites by Magnetic Resonance Technique. Materials, 2021, 14, 977.	2.9	3
7	Interleaving CFRP and GFRP with a Thermoplastic Ionomer: The Effect on Bending Properties. Applied Composite Materials, 2021, 28, 559-572.	2.5	6
8	Microstructural, Mechanical, and Fracture Characterization of Metal Matrix Composite Manufactured by Accumulative Roll Bonding. Journal of Materials Engineering and Performance, 2021, 30, 2645-2660.	2.5	6
9	Stacked denoising autoencoder for infrared thermography image enhancement. , 2021, , .		3
10	5th Brazilian Conference on Composite Materials. Materials Research, 2021, 24, .	1.3	0
11	Distributed Fiber Optics Sensing Applied to Laminated Composites: Embedding Process, Strain Field Monitoring with OBR and Fracture Mechanisms. Journal of Nondestructive Evaluation, 2020, 39, 1.	2.4	13
12	Fatigue failure analysis of riveted fibre-metal laminate lap joints. Engineering Fracture Mechanics, 2020, 239, 107275.	4.3	8
13	Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers. Composite Structures, 2020, 251, 112625.	5.8	20
14	Nanocellulose-coated carbon fibers towards developing hierarchical polymer matrix composites. Materials Today: Proceedings, 2019, 8, 820-831.	1.8	4
15	Impact behavior of Glareâ,,¢ hybrid laminate under extreme thermal conditions. Materials Today: Proceedings, 2019, 8, 769-777.	1.8	3
16	An Experimental Investigation of the Mechanical Behavior of GFRP Coâ€cured Joints. Macromolecular Symposia, 2019, 383, 1800007.	0.7	0
17	Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites. Journal of Composite Materials, 2018, 52, 2743-2753.	2.4	15
18	Magnetic resonance imaging of contaminated and damaged core cells in polymer composite sandwich panels. Journal of Sandwich Structures and Materials, 2018, 20, 831-860.	3.5	2

#	Article	IF	CITATIONS
19	Interphase analysis of hierarchical composites via transmission electron microscopy. Composite Interfaces, 2017, 24, 849-859.	2.3	6
20	TEMPO-oxidized cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer composites. Materials and Design, 2017, 133, 340-348.	7.0	35
21	Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase. EXPRESS Polymer Letters, 2017, 11, 47-59.	2.1	16
22	Infrared thermography for CFRP inspection: computational model and experimental results. Proceedings of SPIE, 2016, , .	0.8	4
23	Ageing effect on the tensile behavior of pultruded CFRP rods. Materials and Design, 2016, 110, 245-254.	7.0	28
24	Lowâ€cost, environmentally friendly route to produce glass fiberâ€reinforced polymer composites with microfibrillated cellulose interphase. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
25	Fracture characterization of continuous fibre-reinforced polymer matrix composite laminates by Nuclear Magnetic Resonance. Procedia Structural Integrity, 2016, 2, 136-143.	0.8	7
26	Surface contact fatigue failure of a case hardened pinion shaft. Materials Research, 2014, 17, 535-541.	1.3	5
27	Compression After Impact and Fatigue of Reconsolidated Fiber-reinforced Thermoplastic Matrix Solid Composite Laminate., 2014, 3, 485-492.		5
28	Essential Work of Fracture Testing Method Applied to Medium Density Polyethylene., 2014, 3, 756-763.		13
29	Fatigue Crack Growth Behavior of Friction Stir Welded 2024-T3 Aluminum Alloy Tested under Accelerated Salt Fog Exposure. Materials Performance and Characterization, 2014, 3, 232-251.	0.3	5
30	An assessment of essential work of fracture testing method applied to medium density polyethylene (MDPE). Engineering Fracture Mechanics, 2013, 105, 136-151.	4.3	10
31	Nondestructive testing with thermography. European Journal of Physics, 2013, 34, S91-S109.	0.6	121
32	Prediction of Failures in Single Lap Bonded Composite Joint Subjected to Low Energy Impact Loading. International Journal of Vehicle Structures and Systems, 2012, 4, .	0.2	2
33	A review of welding technologies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Management, 2012, 4, 255-266.	0.3	109
34	Load Ratio Estimation Through Striation Height and Spacing Analysis of an Aerospace Al Alloy 7475-T7351. Journal of Materials Engineering and Performance, 2011, 20, 382-389.	2.5	6
35	Caracterização de danos e resistência residual de um laminado hÃbrido metal/fibra após impactos repetidos de baixa energia. Revista Materia, 2011, 16, 668-682.	0.2	2
36	Effect of precracking method on KIc results for medium-density polyethylene tested under cryogenic condition. Polymer Testing, 2010, 29, 667-673.	4.8	14

#	Article	IF	Citations
37	Tenacidade à fratura translaminar dinâmica de laminados compósitos de fibras de carbono e resina epóxi de grau aeronáutico. Polimeros, 2010, 20, 345-351.	0.7	1
38	Tenacidade à fratura translaminar dinâmica de um laminado hÃbrido metal-fibra para uso em elevadas temperaturas. Polimeros, 2010, 20, 246-252.	0.7	2
39	Thermal, Mechanical, and Hygroscopic Behavior of Sisal Fiber/Polyurethane Resin-based Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1399-1417.	3.1	28
40	Tenacidade à fratura translaminar dinâmica de um laminado hÃbrido metal-fibra para uso em elevadas temperaturas. Polimeros, 2010, , .	0.7	0
41	Charpy impact toughness of conventional and advanced composite laminates for aircraft construction. Materials Research, 2009, 12, 395-403.	1.3	21
42	Inspeção termográfica de danos por impacto em laminados de matriz polimérica reforçados por fibras de carbono. Polimeros, 2009, 19, 318-328.	0.7	5
43	The Brazilian Experience into Materials Research and Their Applications to Aeronautical and Aerospace Industry. , 2009, , .		0
44	Resistência e tolerância a impacto transversal de baixa energia de um laminado hÃbrido metal/fibra. Revista Materia, 2009, 14, 795-813.	0.2	1
45	Fatigue behaviour of friction stir welded AA2024â€₹3 alloy: longitudinal and transverse crack growth. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 526-538.	3.4	21
46	ANÃLISE DE FALHA DE UM COMPONENTE ESTRUTURAL DE PLANTA DE PELOTIZAÇÃO DE MINÉRIO DE FERR Tecnologia Em Metalurgia E Materiais, 2008, 5, 51-55.	0.1	2
47	On the relation between micro- and macroscopic fatigue crack growth rates in aluminum alloy AMS 7475-T7351. International Journal of Fracture, 2007, 142, 233-240.	2.2	3
48	Residual Stress Evaluation of AA2024-T3 Friction Stir Welded Joints. Journal of Materials Engineering and Performance, 2007, 16, 86-92.	2.5	26
49	Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties. Materials Research, 2006, 9, 121-130.	1.3	9
50	Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties. Materials Research, 2006, 9, 115-120.	1.3	24
51	Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology, 2006, 66, 1328-1335.	7.8	183
52	Modeling of Stress Ratio Effect on Al Alloy SAE AMS 7475-T7351: Influence of Loading Direction. Journal of Materials Engineering and Performance, 2006, 15, 608-613.	2.5	0
53	Evaluating the Berkovitz Method to Predict Fatigue Loads in Mechanical Failure Investigations. Journal of Materials Engineering and Performance, 2006, 15, 661-667.	2.5	1
54	FADIGA APÓS MÚLTIPLOS IMPACTOS EM LAMINADOS CARBONO-EPÓXI. Tecnologia Em Metalurgia E Materiais, 2006, 2, 63-70.	0.1	2

#	Article	IF	CITATIONS
55	Estimating fatigue life under variable amplitude loading through quantitative fractography – A case study. Engineering Failure Analysis, 2004, 11, 547-559.	4.0	12
56	Grain size effects in the charpy impact energy of a thermally embrittled RPV steel. Journal of Materials Science, 2003, 38, 1493-1498.	3.7	6
57	Backscattered electron microscopy technique enhancing stretch zone width imaging for initiation fracture toughness measurements. Materials Characterization, 2003, 51, 159-170.	4.4	7
58	On the fitting and extrapolation of J-resistance data derived through the linear normalization technique. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 107-114.	3.4	3
59	Evaluating the linear normalization technique for deriving J-resistance curves. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 97-106.	3.4	5
60	Correlation between Charpy impact energy and Jfracture toughness for thermally embrittled reactor pressure vessel steel. Materials Science and Technology, 2003, 19, 1435-1441.	1.6	0
61	Correlating Charpy and J-fracture toughness parameters in structural integrity assessments. European Structural Integrity Society, 2002, 30, 307-314.	0.1	0
62	Grain-Size Effects in the Quasi-Static Fracture Resistance of a Thermally Embrittled RPV Steel (Quenched and Tempered Microstructures). Journal of Materials Engineering and Performance, 2002, 11, 563-570.	2.5	5
63	Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part I - Annealing. Materials Research, 2002, 5, 357-364.	1.3	7
64	Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part II - Quenching and Tempering. Materials Research, 2002, 5, 365-371.	1.3	6
65	Grain size effects on the critical stretch zone width of charpy impact specimens. Journal of Materials Science Letters, 2002, 21, 1869-1873.	0.5	2
66	Grain Size Effects in the Quasi-Static Fracture Resistance of a Thermally Embrittled RPV Steel (Annealed Microstructures). Journal of Materials Engineering and Performance, 2002, 11, 414-421.	2.5	7
67	Linear elastic vs elastic-plastic fracture mechanics methods in nuclear vessel integrity assessments. International Journal of Pressure Vessels and Piping, 1997, 74, 97-103.	2.6	1
68	NANOCELLULOSE-COATED CARBON FIBERS TOWARDS DEVELOPING HIERARCHICAL POLYMER MATRIX COMPOSITES. , 0, , .		0
69	Accelerated Ageing Effects on Short-Beam Strength Behavior of Pultruded CFRP Rods. Applied Composite Materials, 0, , 1.	2.5	5