Makoto Kusaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7755772/publications.pdf

Version: 2024-02-01

45 papers

3,675 citations

218677 26 h-index 254184 43 g-index

47 all docs

47 docs citations

47 times ranked

3292 citing authors

#	Article	IF	CITATIONS
1	Genetic analysis of chlorophyll synthesis and degradation regulated by BALANCE of CHLOROPHYLL METABOLISM. Plant Physiology, 2022, 189, 419-432.	4.8	14
2	The complete sequence of the chloroplast genome of <i>Chrysanthemum rupestre</i> , a diploid disciform capitula species of <i>Chrysanthemum</i> . Mitochondrial DNA Part B: Resources, 2022, 7, 603-605.	0.4	3
3	Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. Plant Physiology, 2021, 186, 767-781.	4.8	10
4	Regulation of the plastochron by three many-noded dwarf genes in barley. PLoS Genetics, 2021, 17, e1009292.	3.5	7
5	A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum. Communications Biology, 2021, 4, 1167.	4.4	32
6	Functional Divergence of G and Its Homologous Genes for Green Pigmentation in Soybean Seeds. Frontiers in Plant Science, 2021, 12, 796981.	3.6	0
7	Identification and Characterization of an Early Leaf Senescence Gene ELS1 in Soybean. Frontiers in Plant Science, 2021, 12, 784105.	3.6	4
8	Regulation of Sugar and Storage Oil Metabolism by Phytochrome during De-etiolation. Plant Physiology, 2020, 182, 1114-1129.	4.8	29
9	RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Plant and Cell Physiology, 2020, 61, 1262-1272.	3.1	25
10	Genetic Interaction Among Phytochrome, Ethylene and Abscisic Acid Signaling During Dark-Induced Senescence in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 564.	3.6	31
11	A pure line derived from a self-compatible Chrysanthemum seticuspe mutant as a model strain in the genus Chrysanthemum. Plant Science, 2019, 287, 110174.	3.6	13
12	pCYOs: Binary vectors for simple visible selection of transformants using an albino-cotyledon mutant in <i>Arabidopsis thaliana</i> . Plant Biotechnology, 2019, 36, 39-42.	1.0	1
13	De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Research, 2019, 26, 195-203.	3.4	67
14	Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. Journal of Experimental Botany, 2018, 69, 1027-1035.	4.8	22
15	Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. Nature Plants, 2018, 4, 1044-1055.	9.3	38
16	The Non-Mendelian Green Cotyledon Gene in Soybean Encodes a Small Subunit of Photosystem II. Plant Physiology, 2017, 173, 2138-2147.	4.8	37
17	Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsisnyc1 Mutant. Frontiers in Plant Science, 2016, 7, 533.	3.6	18
18	Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis. Plant Physiology, 2015, 169, 138-147.	4.8	203

#	Article	IF	CITATIONS
19	A Green-Cotyledon/Stay-Green Mutant Exemplifies the Ancient Whole-Genome Duplications in Soybean. Plant and Cell Physiology, 2014, 55, 1763-1771.	3.1	29
20	Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynthesis Research, 2013, 117, 221-234.	2.9	143
21	<i>NYC4</i> , the rice ortholog of Arabidopsis <i>THF1</i> , is involved in the degradation of chlorophyll \hat{a} €" protein complexes during leaf senescence. Plant Journal, 2013, 74, 652-662.	5.7	98
22	Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonicarice. BMC Plant Biology, 2011, 11, 10.	3.6	130
23	Participation of Chlorophyll b Reductase in the Initial Step of the Degradation of Light-harvesting Chlorophyll a/b-Protein Complexes in Arabidopsis. Journal of Biological Chemistry, 2009, 284, 17449-17456.	3.4	197
24	A Novel Carotenoid Derivative, Lutein 3-Acetate, Accumulates in Senescent Leaves of Rice. Plant and Cell Physiology, 2009, 50, 1573-1577.	3.1	11
25	Two shortâ€chain dehydrogenase/reductases, NONâ€YELLOW COLORING 1 and NYC1â€LIKE, are required for chlorophyll <i>b</i> i> and lightâ€harvesting complex II degradation during senescence in rice. Plant Journal, 2009, 57, 120-131.	5.7	299
26	<i>PLASTOCHRON3/GOLIATH</i> encodes a glutamate carboxypeptidase required for proper development in rice. Plant Journal, 2009, 58, 1028-1040.	5.7	69
27	Defect in nonâ€yellow coloring 3, an α/β hydrolaseâ€fold family protein, causes a stayâ€green phenotype during leaf senescence in rice. Plant Journal, 2009, 59, 940-952.	5.7	192
28	Molecular characterization of mutations induced by gamma irradiation in rice. Genes and Genetic Systems, 2009, 84, 361-370.	0.7	101
29	Utilization and Molecular Characterization of Seed Protein Composition Mutants in Rice Plants. Japan Agricultural Research Quarterly, 2009, 43, 1-5.	0.4	4
30	stay green çªç"¶å‰ç•°ã•メンデル 「é₽ä¼ã®æ³•則ã€ç™ºè¦«ã«ç"¨ã¸ã,‰ã,Œã¥é₽ä¼åã®åŒå®š. Kagaku	To.Seibut	s o , 2008, 46
31	Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14169-14174.	7.1	195
32	Rice NON-YELLOW COLORING1 Is Involved in Light-Harvesting Complex II and Grana Degradation during Leaf Senescence. Plant Cell, 2007, 19, 1362-1375.	6.6	430
33	Transmissible and Nontransmissible Mutations Induced by Irradiating Arabidopsis thaliana Pollen With Î ³ -Rays and Carbon IonsThis article is dedicated to Toshiya Takano, who passed away in December 2003 Genetics, 2005, 169, 881-889.	2.9	127
34	Characterization of Chlorophyllide a Oxygenase (CAO) in Rice. Breeding Science, 2005, 55, 361-364.	1.9	17
35	RNA interference in crop plants. Current Opinion in Biotechnology, 2004, 15, 139-143.	6.6	131
36	Low glutelin content1: A Dominant Mutation That Suppresses the Glutelin Multigene Family via RNA Silencing in Rice[W]. Plant Cell, 2003, 15, 1455-1467.	6.6	198

#	Article	IF	CITATIONS
37	Monoallelic Expression and Dominance Interactions in Anthers of Self-Incompatible <i>Arabidopsis lyrata</i> Â. Plant Physiology, 2002, 128, 17-20.	4.8	56
38	Coevolution of the <i>S</i> -Locus Genes <i>SRK</i> , <i>SLG</i> and <i>SP11/SCR</i> in <i>Brassica oleracea</i> and <i>B. rapa</i> . Genetics, 2002, 162, 931-940.	2.9	137
39	Monoallelic expression and dominance interactions in anthers of self-incompatible Arabidopsis lyrata. Plant Physiology, 2002, 128, 17-20.	4.8	22
40	Self-Incompatibility in the Genus Arabidopsis: Characterization of the S Locus in the Outcrossing A. lyrata and Its Autogamous Relative A. thaliana. Plant Cell, 2001, 13, 627-643.	6.6	293
41	Self-Incompatibility in the Genus Arabidopsis: Characterization of the S Locus in the Outcrossing A. lyrata and Its Autogamous Relative A. thaliana. Plant Cell, 2001, 13, 627.	6.6	4
42	Characterization of the <i>S</i> -Locus Region of Almond (<i>Prunus dulcis</i>): Analysis of a Somaclonal Mutant and a Cosmid Contig for an <i>S</i> Haplotype. Genetics, 2001, 158, 379-386.	2.9	77
43	Characterization ofBrassica S-haplotypes lackingS-locus glycoprotein1. FEBS Letters, 2000, 482, 102-108.	2.8	58
44	Sequence and Structural Diversity of the S Locus Genes From Different Lines With the Same Self-Recognition Specificities in Brassica oleracea. Genetics, 2000, 154, 413-420.	2.9	51
45	Comparative analysis ofShaplotypes with very similarSLGalleles inBrassica rapaandBrassica oleracea. Plant Journal, 1999, 17, 83-91.	5 . 7	51