José I GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7755042/publications.pdf

Version: 2024-02-01

199 papers 7,393 citations

47006 47 h-index 72 g-index

229 all docs

229 docs citations

times ranked

229

5495 citing authors

#	Article	IF	Citations
1	Noncovalent Immobilization of Enantioselective Catalysts. Chemical Reviews, 2009, 109, 360-417.	47.7	303
2	Glycerol based solvents: synthesis, properties and applications. Green Chemistry, 2014, 16, 1007-1033.	9.0	229
3	Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. Journal of the American Chemical Society, 2001, 123, 7616-7625.	13.7	176
4	Do Secondary Orbital Interactions Really Exist?. Accounts of Chemical Research, 2000, 33, 658-664.	15.6	153
5	Solvent effects on the mechanism and selectivities of asymmetric Diels-Alder reactions. Journal of the American Chemical Society, 1993, 115, 8780-8787.	13.7	142
6	Enantioselective catalysis with chiral complexes immobilized on nanostructured supports. Chemical Society Reviews, 2009, 38, 695-706.	38.1	134
7	Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers. Green Chemistry, 2010, 12, 426.	9.0	131
8	13C NMR of pyrazoles. Magnetic Resonance in Chemistry, 1993, 31, 107-168.	1.9	123
9	Density Functional Theory Study of a Lewis Acid Catalyzed Dielsâ^Alder Reaction. The Butadiene + Acrolein Paradigm. Journal of the American Chemical Society, 1998, 120, 2415-2420.	13.7	123
10	Bis(oxazoline)copper Complexes Covalently Bonded to Insoluble Support as Catalysts in Cyclopropanation Reactions. Journal of Organic Chemistry, 2001, 66, 8893-8901.	3.2	123
11	Polymer-Supported Bis(oxazoline)â^'Copper Complexes as Catalysts in Cyclopropanation Reactions. Organic Letters, 2000, 2, 3905-3908.	4.6	109
12	Hydrotalcite-promoted epoxidation of electron-deficient alkenes with hydrogen peroxide. Tetrahedron Letters, 1995, 36, 4125-4128.	1.4	102
13	Clay-supported non-chiral and chiral Mn(salen) complexes as catalysts for olefin epoxidation. Journal of Molecular Catalysis A, 1998, 136, 47-57.	4.8	99
14	Simple and Efficient Heterogeneous Copper Catalysts for Enantioselective Câ [^] 'H Carbene Insertion. Organic Letters, 2007, 9, 731-733.	4.6	99
15	Applied Biotransformations in Green Solvents. Chemistry - A European Journal, 2010, 16, 9422-9437.	3.3	99
16	How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie - International Edition, 2000, 39, 1503-1506.	13.8	98
17	Recent advances in the immobilization of chiral catalysts containing bis(oxazolines) and related ligands. Coordination Chemistry Reviews, 2008, 252, 624-646.	18.8	96
18	Silica-Supported Titanium Derivatives as Catalysts for the Epoxidation of Alkenes with Hydrogen Peroxide: A New Way to Tuneable Catalytic Activity through Ligand Exchange. Journal of Catalysis, 2000, 189, 40-51.	6.2	95

#	Article	IF	Citations
19	Modelling of solvent effects on the Diels–Alder reaction. Chemical Society Reviews, 1996, 25, 209-218.	38.1	94
20	Optimization of cyclohexene epoxidation with dilute hydrogen peroxide and silica-supported titanium catalysts. Applied Catalysis A: General, 2003, 245, 363-376.	4.3	88
21	Solvent effects on Diels-Alder reactions. The use of aqueous mixtures of fluorinated alcohols and the study of reactions of acrylonitrile. Journal of the Chemical Society Perkin Transactions II, 1997, , 653.	0.9	78
22	Supported Ionic-Liquid Films (SILF) as Two-Dimensional Nanoreactors for Enantioselective Reactions: Surface-Mediated Selectivity Modulation (SMSM). Chemistry - A European Journal, 2007, 13, 287-291.	3.3	77
23	Bis(oxazoline)–Copper Complexes, Supported by Electrostatic Interactions, as Heterogeneous Catalysts for Enantioselective Cyclopropanation Reactions: Influence of the Anionic Support. Journal of Catalysis, 1999, 186, 214-221.	6.2	75
24	Enantioselective cyclopropanation reactions in ionic liquids. Tetrahedron: Asymmetry, 2001, 12, 1891-1894.	1.8	75
25	A new titanium-silica catalyst for the epoxidation of alkenes. Journal of Molecular Catalysis A, 1996, 112, 259-267.	4.8	74
26	Catalytic sites in silica-supported titanium catalysts: silsesquioxane complexes as models. Journal of Catalysis, 2005, 233, 90-99.	6.2	74
27	The Role of Binding Constants in the Efficiency of Chiral Catalysts Immobilized by Electrostatic Interactions: The Case of Azabis(oxazoline)–Copper Complexes. Chemistry - A European Journal, 2004, 10, 2997-3005.	3.3	71
28	Experimental and theoretical study of the influence of the solvent on asymmetric diels?alder reactions. Journal of Physical Organic Chemistry, 1992, 5, 230-238.	1.9	68
29	The First Immobilization of Pyridine-bis(oxazoline) Chiral Ligands. Organic Letters, 2002, 4, 3927-3930.	4.6	67
30	Factors influencing the k10 montmorillonite-catalyzed diels-alder reaction between methyl acrylate and cyclopentadiene. Journal of Catalysis, 1992, 137, 394-407.	6.2	62
31	Clay-supported bis(oxazoline)–copper complexes as heterogeneous catalysts of enantioselective cyclopropanation reactions. Tetrahedron: Asymmetry, 1998, 9, 3997-4008.	1.8	62
32	Theoretical Insights into the Role of a Counterion in Copper-Catalyzed Enantioselective Cyclopropanation Reactions. Chemistry - A European Journal, 2004, 10, 758-765.	3.3	60
33	Application of natural phosphate modified with sodium nitrate in the synthesis of chalcones: a soft and clean method. Journal of Catalysis, 2003, 213, 1-6.	6.2	56
34	Development of a model to explain the influence of the solvent on the rate and selectivity of diels-alder reactions. Journal of Physical Organic Chemistry, 1991, 4, 48-52.	1.9	55
35	Immobilisation of bis(oxazoline)–copper complexes on clays and nanocomposites. Influence of different parameters on activity and selectivity. Journal of Materials Chemistry, 2002, 12, 3290-3295.	6.7	55
36	Surface-mediated improvement of enantioselectivity with clay-immobilized copper catalysts. Journal of Molecular Catalysis A, 2003, 196, 101-108.	4.8	54

#	Article	IF	CITATIONS
37	Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chemistry, 2009, 11, 1605.	9.0	54
38	Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS). ChemistryOpen, 2015, 4, 308-317.	1.9	54
39	Comparison of the immobilization of chiral bis(oxazoline)–copper complexes onto anionic solids and in ionic liquids. Green Chemistry, 2004, 6, 93-98.	9.0	52
40	Metal complexes of biologically important ligands: Synthesis of amino acidato complexes of PdII containing a C,N-cyclometallated group as an ancillary ligand. Journal of Organometallic Chemistry, 1995, 490, 35-43.	1.8	51
41	Comparison of the catalytic properties of protonic zeolites and exchanged clays for Diels-Alder synthesis. Applied Catalysis A: General, 1993, 101, 253-267.	4.3	50
42	Effect of the Reaction Conditions on the Epoxidation of Alkenes with Hydrogen Peroxide Catalyzed by Silica-Supported Titanium Derivatives. Journal of Catalysis, 2001, 204, 146-156.	6.2	50
43	The importance of complex stability for asymmetric copper-catalyzed cyclopropanations in [emim][OTf] ionic liquid: the bis(oxazoline)–azabis(oxazoline) case. Tetrahedron Letters, 2004, 45, 6765-6768.	1.4	50
44	<i>C</i> ₁ â€Symmetric Versus <i>C</i> ₂ â€Symmetric Ligands in Enantioselective Copperâ€"Bis(oxazoline) atalyzed Cyclopropanation Reactions. Chemistry - A European Journal, 2007, 13, 8830-8839.	3.3	50
45	Asymmetric cyclopropanation catalysed by cationic bis(oxazoline)-Cull complexes exchanged into clays. Tetrahedron: Asymmetry, 1997, 8, 2089-2092.	1.8	49
46	Bis(oxazoline)–copper complexes supported by electrostatic interactions: scope and limitations. Journal of Catalysis, 2004, 221, 532-540.	6.2	49
47	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands. Journal of Organic Chemistry, 2005, 70, 5536-5544.	3.2	49
48	A new titanium–silica catalyst for the epoxidation of non-functionalized alkenes and allylic alcohols. Journal of the Chemical Society Chemical Communications, 1995, , 539-540.	2.0	48
49	First Asymmetric Dielsâ^'Alder Reactions of Furan and Chiral Acrylates. Usefulness of Acid Heterogeneous Catalysts. Journal of Organic Chemistry, 1996, 61, 9479-9482.	3.2	47
50	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of carbonyl-containing dienophiles. Tetrahedron, 1993, 49, 4073-4084.	1.9	46
51	Comparison of several heterogeneous catalysts in the epoxidation of \hat{l}_{\pm} -isophorone with hydroperoxides. Tetrahedron Letters, 1996, 37, 5995-5996.	1.4	45
52	Is MCM-41 really advantageous over amorphous silica? The case of grafted titanium epoxidation catalysts. Chemical Communications, 2001, , 1510-1511.	4.1	44
53	Title is missing!. Green Chemistry, 2001, 3, 271-274.	9.0	44
54	Surface confinement effects in enantioselective catalysis: Design of new heterogeneous chiral catalysts based on C1-symmetric bisoxazolines and their application in cyclopropanation reactions. Journal of Catalysis, 2008, 258, 378-385.	6.2	44

#	Article	IF	Citations
55	Bis(oxazoline)-metal complexes immobilised by electrostatic interactions as heterogeneous catalysts for enantioselective Diels–Alder reactions. Journal of Molecular Catalysis A, 2001, 165, 211-218.	4.8	43
56	Polymer immobilization of bis(oxazoline) ligands using dendrimers as cross-linkers. Tetrahedron: Asymmetry, 2003, 14, 773-778.	1.8	43
57	QM/MM Modeling of Enantioselective Pybox–Ruthenium- and Box–Copper-Catalyzed Cyclopropanation Reactions: Scope, Performance, and Applications to Ligand Design. Chemistry - A European Journal, 2007, 13, 4064-4073.	3.3	43
58	Molecular modelling study of \hat{l}^2 -cyclodextrin inclusion complexes. Chemical Physics Letters, 1997, 271, 178-184.	2.6	42
59	Linking Homogeneous and Heterogeneous Enantioselective Catalysis through a Self-Assembled Coordination Polymer. Organic Letters, 2008, 10, 4995-4998.	4.6	42
60	Synthetic Transformations for the Valorization of Fatty Acid Derivatives. Synthesis, 2017, 49, 1444-1460.	2.3	42
61	Solvent effects on endo/exo- and regio-selectivities of Diels–Alder reactions of carbonyl-containing dienophiles. Journal of the Chemical Society Perkin Transactions II, 1994, , 847-851.	0.9	40
62	Study of the recycling possibilities for azabis(oxazoline)â€"cobalt complexes as catalysts for enantioselective conjugate reduction. Green Chemistry, 2010, 12, 435.	9.0	40
63	Solvent and counterion effects in the asymmetric cyclopropanation catalysed by bis(oxazoline)–copper complexes. Journal of Molecular Catalysis A, 1999, 144, 85-89.	4.8	39
64	Predicting the Enantioselectivity of the Copper atalysed Cyclopropanation of Alkenes by Using Quantitative Quadrantâ€Điagram Representations of the Catalysts. Chemistry - A European Journal, 2012, 18, 14026-14036.	3.3	39
65	Spectroscopic Study of the Structure of Bis(oxazoline)copper Complexes in Solution and Immobilized on Laponite Clay. Influence of the Structure on the Catalytic Performance. Langmuir, 2000, 16, 5607-5612.	3.5	38
66	Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs?. Journal of Computational Chemistry, 2005, 26, 1347-1358.	3.3	38
67	Theoretical Analysis of the Electron Spin Density Distribution of the Flavin Semiquinone Isoalloxazine Ring within Model Protein Environments. Journal of Physical Chemistry A, 2002, 106, 4729-4735.	2.5	37
68	Glycerol as a source of designer solvents: physicochemical properties of low melting mixtures containing glycerol ethers and ammonium salts. Physical Chemistry Chemical Physics, 2017, 19, 28302-28312.	2.8	37
69	Title is missing!. Topics in Catalysis, 2000, 13, 303-309.	2.8	36
70	DFT Studies on Cobaltâ€Catalyzed Cyclotrimerization Reactions: The Mechanism and Origin of Reaction Improvement under Microwave Irradiation. Chemistry - A European Journal, 2012, 18, 6217-6224.	3.3	36
71	Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere, 2017, 183, 277-285.	8.2	36
72	Chiral lewis acids supported on silica gel and alumina, and their use as catalysts in Diels-Alder reactions of methacrolein and bromoacrolein. Tetrahedron: Asymmetry, 1996, 7, 2263-2276.	1.8	35

#	Article	IF	CITATIONS
73	Conformational Preferences of Methacrolein in Dielsâ^Alder and 1,3-Dipolar Cycloaddition Reactions. Journal of Organic Chemistry, 2006, 71, 9831-9840.	3.2	35
74	Ecotoxicity studies of glycerol ethers in Vibrio fischeri: checking the environmental impact of glycerol-derived solvents. Green Chemistry, 2015, 17, 4326-4333.	9.0	35
75	Glycerol Ethers as Hydrotropes and Their Use to Enhance the Solubility of Phenolic Acids in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5742-5749.	6.7	35
76	Diastereoselective Strecker reaction of D-glyceraldehyde derivatives. A novel route to (2S,3S)- and (2R,3S)-2-amino-3,4-dihydroxybutyric acid. Tetrahedron, 1996, 52, 9563-9574.	1.9	34
77	The Source of theendoRule in the Dielsâ ⁻ 'Alder Reaction: Are Secondary Orbital Interactions Really Necessary?. European Journal of Organic Chemistry, 2005, 2005, 85-90.	2.4	34
78	Pd nanoparticles immobilized in [bmim][PF6] supported on laponite clay as highly recyclable catalysts for the Mizoroki–Heck reaction. Applied Catalysis A: General, 2014, 472, 21-28.	4.3	34
79	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 621-624.	1.8	33
80	Bis(oxazoline)-Based Coordination Polymers: A Recoverable System for Enantioselective Henry Reactions. Journal of Organic Chemistry, 2012, 77, 5525-5532.	3.2	33
81	Effect of clay calcination on clay-catalysed Diels-Alder reactions of cyclopentadiene with methyl and (â^')-menthyl acrylates. Tetrahedron, 1992, 48, 6467-6476.	1.9	32
82	Tandem Dielsâ^'Alder Aromatization Reactions of Furans under Unconventional Reaction Conditions â^' Experimental and Theoretical Studies. European Journal of Organic Chemistry, 2001, 2001, 2891.	2.4	32
83	Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study. Tetrahedron, 1992, 48, 5209-5218.	1.9	31
84	The use of heterogeneous catalysis in Diels-Alder reactions of N-acetyl- $\hat{l}\pm,\hat{l}^2$ -dehydroalaninates. Tetrahedron, 1995, 51, 1295-1300.	1.9	31
85	Beyond reuse in chiral immobilized catalysis: The bis(oxazoline) case. Catalysis Today, 2009, 140, 44-50.	4.4	31
86	Homogeneous and Supported Copper Complexes of Cyclic and Open-Chain Polynitrogenated Ligands as Catalysts of Cyclopropanation Reactions. European Journal of Inorganic Chemistry, 1999, 1999, 2347-2354.	2.0	30
87	An Efficient and Straightforward Access to Sulfur Substituted [2.2]Paracyclophanes:  Application to Stereoselective Sulfenate Salt Alkylation. Organic Letters, 2008, 10, 1271-1274.	4.6	29
88	Preparation of \hat{l} ±-hydroxyphosphonates over phosphate catalysts. Catalysis Communications, 2008, 9, 2503-2508.	3.3	29
89	Role of Substituents in the Solid Acid-Catalyzed Cleavage of the \hat{l}^2 -O-4 Linkage in Lignin Models. ACS Sustainable Chemistry and Engineering, 2018, 6, 1837-1847.	6.7	29
90	Mechanistic insights on the site selectivity in successive 1,3-dipolar cycloadditions to meso-tetraarylporphyrins. Tetrahedron, 2008, 64, 7937-7943.	1.9	28

#	Article	IF	Citations
91	Surface Confinement Effects on Enantioselective Cyclopropanation. Reactions with Supported Chiral 8-Oxazolinylquinolineâ^'Copper Complexes. Organometallics, 2008, 27, 2246-2251.	2.3	28
92	A reusable enantioselective catalytic system for the Kharasch–Sosnovsky allylic oxidation of alkenes based on a ditopic azabis(oxazoline) ligand. Tetrahedron, 2012, 68, 3417-3422.	1.9	28
93	On the role of hexafluoroisopropanol in Diels–Alder reactions of acid-sensitive reagents. Canadian Journal of Chemistry, 1994, 72, 308-311.	1.1	27
94	Solvent effects on Diels-Alder reactions. A semi-empirical study. Computational and Theoretical Chemistry, 1995, 331, 37-50.	1.5	27
95	Cyclopropanation reactions catalysed by copper(II)-exchanged clays and zeolites. Influence of the catalyst on the selectivity. Chemical Communications, 1996, , 1319-1320.	4.1	27
96	Improvement of ligand economy controlled by polymer morphology: The case of polymer-Supported bis (oxazoline) catalysts. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1821-1824.	2.2	27
97	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2005, 44, 458-461.	13.8	27
98	An extremely highly recoverable clay-supported Pd nanoparticle catalyst for solvent-free Heck–Mizoroki reactions. RSC Advances, 2015, 5, 59983-59990.	3.6	27
99	Glycerol-Derived Solvents: Synthesis and Properties of Symmetric Glyceryl Diethers. ACS Sustainable Chemistry and Engineering, 2019, 7, 13004-13014.	6.7	27
100	Hydrotalcite-Catalyzed Alkylation of 2,4-Pentanedione. Synthetic Communications, 1995, 25, 1745-1750.	2.1	26
101	Clay-catalysed asymmetric diels-alder reaction of cyclopentadiene with (â^')-menthyl acrylate. Tetrahedron: Asymmetry, 1991, 2, 953-956.	1.8	25
102	AlPO4-Catalysed asymmetric Diels-Alder reactions of cyclopentadiene with chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 2507-2512.	1.8	25
103	Reversible microencapsulation of pybox–Ru chiral catalysts: scope and limitations. Tetrahedron, 2005, 61, 12107-12110.	1.9	25
104	Solvents derived from glycerol modify classical regioselectivity in the enzymatic synthesis of disaccharides with Biolacta \hat{l}^2 -galactosidase. Green Chemistry, 2011, 13, 2810.	9.0	25
105	Fluorinated alcohols as solvents for diels-alder reactions of chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 1613-1618.	1.8	24
106	Is It $[4+2]$ or $[2+4]$? A New Look at Lewis Acid Catalyzed Dielsâ^'Alder Reactions. Journal of the American Chemical Society, 1996, 118, 11680-11681.	13.7	24
107	1,3-Dipolar cycloaddition of diazomethane to chiral azlactones. Experimental and theoretical studies. Tetrahedron, 1997, 53, 4479-4486.	1.9	24
108	Quantitative structure–property relationships prediction of some physico-chemical properties of glycerol based solvents. Green Chemistry, 2013, 15, 2283.	9.0	24

#	Article	IF	Citations
109	Synthesis of 3-alkoxypropan-1,2-diols from glycidol: experimental and theoretical studies for the optimization of the synthesis of glycerol derived solvents. Green Chemistry, 2017, 19, 4176-4185.	9.0	24
110	An Ab Initio Study on the Conformational and Endo/exo Preferences of Acrylates in Diels-Alder Reactions. Tetrahedron, 1997, 53, 6057-6064.	1.9	23
111	Electronic effects of heterocyclic substituents. Spectroscopical and theoretical (AM1) study in a series of heterocyclic carboxaldehydes. Canadian Journal of Chemistry, 1990, 68, 1477-1481.	1.1	22
112	Epoxidation of chiral electron-deficient alkenes with basic heterogeneous catalysts. Applied Catalysis A: General, 2001, 207, 239-246.	4.3	22
113	Experimental and Theoretical Studies on Structureâ^'Reactivity Relationships of Titanium-Modified Silicas in the Hydrogen Peroxide-Promoted Oxidation of Cyclohexene. Journal of Physical Chemistry B, 2003, 107, 519-526.	2.6	22
114	Improved synthesis of disaccharides with Escherichia coli \hat{l}^2 -galactosidase using bio-solvents derived from glycerol. Tetrahedron, 2011, 67, 7708-7712.	1.9	22
115	Polytopic Oxazolineâ€Based Chiral Ligands for Cyclopropanation Reactions: A New Strategy to Prepare Highly Recyclable Catalysts. Advanced Synthesis and Catalysis, 2011, 353, 2691-2700.	4.3	22
116	Microwave-promoted solventless Mizoroki–Heck reactions catalysed by Pd nanoparticles supported on laponite clay. RSC Advances, 2015, 5, 10102-10109.	3.6	22
117	TADDOL-TiCl2 catalyzed Diels-Alder reactions: unexpected influence of the substituents in the 2-position of the dioxolane ring on the stereoselectivity. Tetrahedron: Asymmetry, 1997, 8, 2561-2570.	1.8	21
118	Empirical treatment of solvent-solute interactions: medium effects on the electronic absorption spectrum of ?-carotene. Journal of Physical Organic Chemistry, 1998, 11, 193-200.	1.9	21
119	Multiphase enantioselective Kharasch–Sosnovsky allylic oxidation based on neoteric solvents and copper complexes of ditopic ligands. Dalton Transactions, 2012, 41, 8285.	3.3	21
120	Clay-catalysed asymmetric Diels-Alder reaction of cyclopentadiene with chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 223-228.	1.8	20
121	A model for the interaction between \hat{l}^2 -cyclodextrin and some acrylic esters. Chemical Physics Letters, 1995, 245, 335-342.	2.6	20
122	Diels-Alder reactions of \hat{l}_{\pm} -amino acid precursors by heterogeneous catalysis: Thermal vs. microwave activation. Applied Catalysis A: General, 1995, 131, 159-166.	4.3	20
123	On the conformational preferences of $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds. An ab initio study. Computational and Theoretical Chemistry, 1996, 362, 187-197.	1.5	20
124	ZnCl2, ZnI2 and TiCl4 supported on silica gel as catalysts for the Diels-Alder reactions of furan. Journal of Molecular Catalysis A, 1997, 123, 43-47.	4.8	20
125	Solubility of gases in fluoroorganic alcohols Part I. Solubilities of several non-polar gases in 1,1,3,3,3-hexafluoropropan-2-ol at 298.15 K and 101.33 kPa. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3595-3599.	1.7	20
126	Clay-catalyzed Friedel-Crafts alkylation of anisole with dienes. Applied Catalysis A: General, 1995, 123, 273-287.	4.3	19

#	Article	IF	Citations
127	Diels-Alder reactions in \hat{l}^2 -cyclodextrin cavities. A molecular modelling study. Tetrahedron Letters, 1995, 36, 2129-2132.	1.4	19
128	Diels-Alder reactions of (E)-2-phenyl-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylen]-5(4H)-oxazolone with heterogeneous catalysts. Tetrahedron: Asymmetry, 1996, 7, 2391-2398.	1.8	19
129	Computational Mechanistic Studies on Enantioselective pyboxâ^'Ruthenium-Catalyzed Cyclopropanation Reactions. Organometallics, 2005, 24, 3448-3457.	2.3	19
130	Synthesis of non-symmetric bisoxazoline compounds. An easy way to reach tailored chiral ligands. Tetrahedron: Asymmetry, 2006, 17, 2270-2275.	1.8	19
131	The issue of â€~molecular radiators' in microwave-assisted reactions. Computational calculations on ring closing metathesis (RCM). Organic and Biomolecular Chemistry, 2014, 12, 2436-2445.	2.8	19
132	Comparative ecotoxicology study of two neoteric solvents: Imidazolium ionic liquid vs. glycerol derivative. Ecotoxicology and Environmental Safety, 2016, 132, 429-434.	6.0	19
133	Importance of electronic and nuclear polarization energy on diastereofacial selectivity of Diels–Alder reactions in aqueous solution. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	18
134	Understanding the Unusual Regioselectivity in the Nucleophilic Ring-Opening Reactions of gem-Disubstituted Cyclic Sulfates. Experimental and Theoretical Studies. Journal of Organic Chemistry, 2003, 68, 4506-4513.	3.2	18
135	Study of the asymmetric diels-alder reaction of a chiral azlactone. Tetrahedron: Asymmetry, 1994, 5, 759-766.	1.8	17
136	(Z)- and (E)-2-phenyl-4-benzylidene-5(4H)-oxazolones as dienophiles. Improved selectivity by the use of heterogeneous catalysts. Tetrahedron, 1995, 51, 9217-9222.	1.9	17
137	Comparison of hydrophilic and hydrophobic silicas as supports for titanium catalysts. Applied Catalysis A: General, 2004, 276, 113-122.	4.3	17
138	The first synthesis of organic–inorganic hybrid materials with chiral bis(oxazoline) ligands. Chemical Communications, 2005, , 4669.	4.1	17
139	Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents. Journal of Molecular Catalysis A, 2011, 334, 83-88.	4.8	17
140	Electron impact mass spectrometry and collisional spectroscopy in the structural characterization of 4â€benzylidene and 4â€phenylethylideneâ€2â€phenylâ€5(4 <i>H</i>)â€oxazolones. Journal of Heterocyclic Chemistry, 1990, 27, 1495-1499.	2.6	16
141	Acidity in water (pKa values) of carboxylic acids derived from simple heterocycles (azoles and azines). Collection of Czechoslovak Chemical Communications, 1990, 55, 72-79.	1.0	16
142	Description of Heterocyclic Substituents: A Free-Wilson Type Approach Using D-Optimal Designs. QSAR and Combinatorial Science, 1987, 6, 173-178.	1.2	15
143	Contribution of different mechanisms and different active sites to the clay-catalyzed Diels–Alder reactions. Journal of Molecular Catalysis A, 1997, 121, 97-102.	4.8	15
144	Quantum Chemical Insights into the Mechanism of the TADDOLâ^'TiCl2Catalyzed Dielsâ^'Alder Reactions. Journal of Organic Chemistry, 1998, 63, 2321-2324.	3.2	14

#	Article	IF	Citations
145	Can Enantioselectivity be Computed in Enthalpic Barrierless Reactions? The Case of Cu ^I â€Catalyzed Cyclopropanation of Alkenes. Chemistry - A European Journal, 2011, 17, 529-539.	3.3	14
146	Polytopic Bis(oxazoline)â€Based Ligands for the Development of Recoverable Catalytic Systems Applied to the Cyclopropanation Reaction. European Journal of Organic Chemistry, 2014, 2014, 1531-1540.	2.4	14
147	A study on the role of solvent in clay-catalysed Diels—Alder reactions. Journal of Molecular Catalysis, 1991, 68, L31-L34.	1.2	13
148	Dramatic Medium Effects on Reactivity. The Ionization Sites of Pyrrole and Indole Carboxylic Acids. Journal of the American Chemical Society, 1998, 120, 13224-13229.	13.7	13
149	Stereoselectivity induced by support confinement effects. Aza-pyridinoxazolines: A new family of C1-symmetric ligands for copper-catalyzed enantioselective cyclopropanation reactions. Dalton Transactions, 2010, 39, 2098.	3.3	13
150	Comparative ecotoxicity study of glycerol-biobased solvents. Environmental Chemistry, 2017, 14, 370.	1.5	13
151	AlPO4catalyzed Diels-Alder reaction of cyclopentadiene with (-)-menthyl acrylate. Influence of catalyst surface properties. Catalysis Letters, 1996, 36, 215-221.	2.6	12
152	Heterogeneous activation of Diels-Alder reactions of non-chiral and chiral (E)-2-cyanocinnamates. Applied Catalysis A: General, 1996, 136, 113-123.	4.3	12
153	On the Nature of the Lewis Acid Sites of Aluminum-Modified Silica. A Theoretical and Experimental Study. Journal of Physical Chemistry B, 1999, 103, 1664-1670.	2.6	12
154	Heterogeneous catalysis in the synthesis and reactivity of allantoin. Green Chemistry, 2003, 5, 275-277.	9.0	12
155	Solvent Effects on the 9-Hydroxymethylanthracene +N-Ethylmaleimide Dielsâ^Alder Reaction. A Theoretical Study. Journal of Organic Chemistry, 2005, 70, 1456-1458.	3.2	12
156	An expedient synthesis of resveratrol through a highly recoverable palladium catalyst. Tetrahedron, 2017, 73, 5581-5584.	1.9	12
157	Mass spectrometry in stereochemical problems. 6 — The case of mono and di-substituted norbornanes. Organic Mass Spectrometry, 1991, 26, 977-984.	1.3	11
158	Comparison of AlEt2Cl and ZnCl2 supported on silica gel as catalysts of Diels-Alder reactions. Influence of the nature of the dienophile. Catalysis Letters, 1996, 37, 261-266.	2.6	11
159	Accurate Calculation of Chemical Shifts in Highly Dynamic H ₂ @C ₆₀ through an Integrated Quantum Mechanics/Molecular Dynamics Scheme. Organic Letters, 2011, 13, 2528-2531.	4.6	11
160	Relationship between solvent effects and catalyst activation method in a clay-catalysed Diels—Alder reaction. Journal of Molecular Catalysis, 1993, 79, 305-310.	1.2	10
161	The use of solid acids to promote the one-pot synthesis of dl-5-(4-hydroxyphenyl)hydantoin. Applied Catalysis A: General, 2002, 224, 153-159.	4.3	10
162	Enantiodiscrimination of equol in \hat{l}^2 -cyclodextrin: an experimental and computational study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 60, 103-113.	1.6	10

#	Article	IF	CITATIONS
163	Calcined and silylated K10 montmorillonites as catalysts of pericyclic reactions of trans-anethole. Chemical Communications, 1996, , 1981-1982.	4.1	9
164	Mechanisms of Acid Decomposition of Dithiocarbamates. 4. Theoretical Calculations on the Water-Catalyzed Reaction. Journal of Organic Chemistry, 2002, 67, 2755-2761.	3.2	9
165	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie, 2005, 117, 462-465.	2.0	9
166	An Efficient and General One-Pot Method for the Synthesis of Chiral Bis(oxazoline) and Pyridine Bis(oxazoline) Ligands. Synlett, 2005, 2005, 2321-2324.	1.8	9
167	Mechanistic study of the ring-size modulation in Michael–Dieckmann type reactions of 2-acylaminoacrylates with ketene diethyl acetal. New Journal of Chemistry, 2007, 31, 224-229.	2.8	9
168	Polytopic bis(oxazoline)-based ligands for recoverable catalytic systems applied to the enantioselective Henry reaction. Organic and Biomolecular Chemistry, 2015, 13, 9314-9322.	2.8	9
169	Optimization of the Synthesis of Glycerol Derived Monoethers from Glycidol by Means of Heterogeneous Acid Catalysis. Molecules, 2018, 23, 2887.	3.8	9
170	Molecular modelling of the isothiazolo[5,4-b]pyridin-3(2H)-one derivatives. Tetrahedron, 1996, 52, 8947-8956.	1.9	8
171	The use of Lewis acids in the synthesis of 5-arylhydantoins. Journal of Catalysis, 2004, 226, 192-196.	6.2	8
172	Immobilized pybox systems as recoverable chiral catalysts. Comptes Rendus Chimie, 2004, 7, 161-167.	0.5	8
173	A FACILE AND EFFICIENT SYNTHESIS OF PYRROLE-3-CARBOXYLIC ACID FROM PYRROLE. Organic Preparations and Procedures International, 1986, 18, 283-285.	1.3	7
174	X-Ray absorption spectroscopy investigation on the structure of methyl acrylate–TiCl4complexes in solution. Journal of the Chemical Society Chemical Communications, 1994, , 2165-2166.	2.0	7
175	Investigation of Dienophileâ^TiCl4Complexation by Means of X-ray Absorption and 13C-NMR Spectroscopies§. Journal of Organic Chemistry, 1996, 61, 1636-1642.	3.2	7
176	The replacement of mineral acids by sulfonic resins in the synthesis of rac-5-(4-hydroxyphenyl)hydantoin from p-hydroxymandelic acid and urea. Applied Catalysis A: General, 2004, 274, 9-14.	4.3	7
177	Heterogeneous catalysis of asymmetric Diels—Alder reactions. Journal of Molecular Catalysis, 1994, 89, 159-164.	1.2	6
178	A test for the coexistence of reactive intermediates with different molecular composition in chiral Lewis acid-catalysed reactions: the case of Ti-TADDOLate-catalysed Dielsâ€"Alder reactions. Tetrahedron: Asymmetry, 2001, 12, 1829-1835.	1.8	6
179	STUDIES IN THE AZOLE SERIES. CIV.1 EXPERIMETAL AND CALCULATED DIPOLE MOMENTS OF 3(5)-PHENYLPYPRAZOLES. Bulletin Des Sociétés Chimiques Belges, 2010, 104, 383-386.	0.0	6
180	Heterogenization on Inorganic Supports: Methods and Applications. Catalysis By Metal Complexes, 2010, , 65-121.	0.6	6

#	Article	IF	Citations
181	Structure and relative Lewis acidity of the catalytic sites of an aluminium-modified silica gel A theoretical study. Journal of Molecular Catalysis A, 1997, 119, 95-103.	4.8	5
182	Readily Scalable Methodology for the Synthesis of Nonsymmetric Glyceryl Diethers by a Tandem Acid-/Base-Catalyzed Process. Organic Process Research and Development, 2020, 24, 154-162.	2.7	5
183	Immobilizing a single pybox ligand onto a library of solid supports. Molecular Diversity, 2000, 6, 93-105.	3.9	4
184	Non-covalent Immobilization of Catalysts Based on Chiral Diazaligands. , 0, , 149-190.		4
185	AraBOX and XyliBOX based catalysts for cyclopropanations, Diels Alder cycloadditions and allylic additions. Tetrahedron: Asymmetry, 2013, 24, 750-757.	1.8	4
186	Asymmetric cyclopropanation in ionic liquids promoted by dicopper complexes of ditopic ligands. Tetrahedron: Asymmetry, 2014, 25, 833-837.	1.8	4
187	Aspartame analogues containing 1-amino-2-phenylcyclohexanecarboxylic acids (c6Phe). Tetrahedron, 2002, 58, 4899-4905.	1.9	3
188	Title is missing!. Catalysis Letters, 1998, 51, 235-239.	2.6	2
189	Title is missing!. Catalysis Letters, 2003, 88, 31-32.	2.6	2
190	Aspartame analogues containing 1-amino-2-phenylcyclohexanecarboxylic acids (c6Phe). Part 2. Tetrahedron, 2005, 61, 2913-2919.	1.9	2
191	The unusual reactivity of benzene and monosubstituted benzenes towards tetracyanoethylene oxide: a theoretical study. New Journal of Chemistry, 2009, 33, 471-478.	2.8	2
192	CAFC9, 9th Congress on Catalysis Applied to Fine Chemicals (Zaragoza, Spain, September 13–16, 2010). Catalysis Today, 2011, 173, 1.	4.4	2
193	Identification of Diels-Alder regioisomers by mass spectrometry coupled with theoretical calculations. Organic Mass Spectrometry, 1993, 28, 752-758.	1.3	1
194	Theoretical evidence of a feasible concerted antara–antara cycloaddition. Chemical Communications, 1999, , 903-904.	4.1	1
195	A Theoretical (AM1) and Experimental Dipole Moment Study of 5(4H)â€Oxazolones. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 945-951.	0.0	1
196	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands ChemInform, 2005, 36, no.	0.0	0
197	The First Synthesis of Organic—Inorganic Hybrid Materials with Chiral Bis(oxazoline) Ligands ChemInform, 2006, 37, no.	0.0	0
198	Caracterización, mediante espectroscopia EPR, de los catalizadores quirales bis (Oxazolina)-Cu soportados en Laponitas. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 552-555.	1.9	0

#	Article	IF	CITATIONS
199	Bis(oxazoline)-copper complexes, immobilized by electrostatic interactions, as catalysts for enantioselective aziridination. Arkivoc, 2004, 2004, 67-73.	0.5	O