Rebecca D Burdine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/775467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring What Matters to Individuals with Angelman Syndrome and Their Families: Development of a Patient-Centered Disease Concept Model. Child Psychiatry and Human Development, 2021, 52, 654-668.	1.9	34
2	Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nature Communications, 2021, 12, 5482.	12.8	24
3	The STARS Phase 2 Study. Neurology, 2021, 96, e1024-e1035.	1.1	12
4	Left-right asymmetric heart jogging increases the robustness of dextral heart looping in zebrafish. Developmental Biology, 2020, 459, 79-86.	2.0	19
5	Swimming toward solutions: Using fish and frogs as models for understanding <scp>RASopathies</scp> . Birth Defects Research, 2020, 112, 749-765.	1.5	10
6	Optimizing photoswitchable MEK. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25756-25763.	7.1	30
7	ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proceedings of the United States of America, 2018, 115, 5474-5479.	7.1	62
8	Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nature Genetics, 2017, 49, 465-469.	21.4	51
9	In vivo severity ranking of Ras pathway mutations associated with developmental disorders. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 510-515.	7.1	44
10	How activating mutations affect MEK1 regulation and function. Journal of Biological Chemistry, 2017, 292, 18814-18820.	3.4	15
11	Left–Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends in Genetics, 2017, 33, 616-628.	6.7	106
12	Modeling Syndromic Congenital Heart Defects in Zebrafish. Current Topics in Developmental Biology, 2017, 124, 1-40.	2.2	36
13	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255
14	Gdf3 is required for robust Nodal signaling during germ layer formation and left-right patterning. ELife, 2017, 6, .	6.0	53
15	Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left–right patterning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150402.	4.0	11
16	Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science, 2016, 352, 1341-1344.	12.6	235
17	c21orf59/kurly Controls Both Cilia Motility and Polarization. Cell Reports, 2016, 14, 1841-1849.	6.4	76
18	RASopathies: unraveling mechanisms with animal models. DMM Disease Models and Mechanisms, 2015,	2.4	66

8, 769-782.

2

REBECCA D BURDINE

#	Article	IF	CITATIONS
19	Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Frontiers in Neural Circuits, 2014, 8, 138.	2.8	32
20	CCDC151 Mutations Cause Primary Ciliary Dyskinesia by Disruption of the Outer Dynein Arm Docking Complex Formation. American Journal of Human Genetics, 2014, 95, 257-274.	6.2	149
21	DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 2013, 45, 995-1003.	21.4	256
22	Functional Knowledge Transfer for High-accuracy Prediction of Under-studied Biological Processes. PLoS Computational Biology, 2013, 9, e1002957.	3.2	62
23	Integration of Nodal and BMP Signals in the Heart Requires FoxH1 to Create Left–Right Differences in Cell Migration Rates That Direct Cardiac Asymmetry. PLoS Genetics, 2013, 9, e1003109.	3.5	60
24	CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nature Genetics, 2012, 44, 714-719.	21.4	228
25	Two additional midline barriers function with midline lefty1 expression to maintain asymmetric Nodal signaling during left-right axis specification in zebrafish. Development (Cambridge), 2011, 138, 4405-4410.	2.5	41
26	The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nature Genetics, 2011, 43, 79-84.	21.4	292
27	Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nature Protocols, 2011, 6, 46-55.	12.0	95
28	Examining the establishment of cellular axes using intrinsic chirality. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12191-12192.	7.1	4
29	Regression-Based Identification of Behavior-Encoding Neurons During Large-Scale Optical Imaging of Neural Activity at Cellular Resolution. Journal of Neurophysiology, 2011, 105, 964-980.	1.8	125
30	Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin. PLoS Genetics, 2011, 7, e1002072.	3.5	52
31	The Exocyst Protein Sec10 Interacts with Polycystin-2 and Knockdown Causes PKD-Phenotypes. PLoS Genetics, 2011, 7, e1001361.	3.5	76
32	Adeno-Associated Virus-Mediated Rescue of the Cognitive Defects in a Mouse Model for Angelman Syndrome. PLoS ONE, 2011, 6, e27221.	2.5	92
33	Imaging Cilia in Zebrafish. Methods in Cell Biology, 2010, 97, 415-435.	1.1	32
34	More than Maintenance? A Role for IFT Genes in Planar Cell Polarity. Journal of the American Society of Nephrology: JASN, 2010, 21, 1240-1241.	6.1	1
35	Categorical data analysis in experimental biology. Developmental Biology, 2010, 348, 3-11.	2.0	29
36	Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning. Development (Cambridge), 2009, 136, 1621-1631.	2.5	50

REBECCA D BURDINE

#	Article	IF	CITATIONS
37	Fluid dynamics in zebrafish Kupffer's vesicle. Developmental Dynamics, 2008, 237, 3602-3612.	1.8	65
38	Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Developmental Biology, 2008, 314, 261-275.	2.0	119
39	SIX2 and BMP4 Mutations Associate With Anomalous Kidney Development. Journal of the American Society of Nephrology: JASN, 2008, 19, 891-903.	6.1	177
40	Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP Journal, 2008, 2, 42-56.	2.5	132
41	Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13924-13929.	7.1	72
42	Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw. Development (Cambridge), 2007, 134, 1605-1615.	2.5	142
43	Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish. Developmental Biology, 2007, 310, 363-378.	2.0	52
44	Brain Asymmetry: Switching from Left to Right. Current Biology, 2005, 15, R343-R345.	3.9	5
45	pitx3 defines an equivalence domain for lens and anterior pituitary placode. Development (Cambridge), 2005, 132, 1579-1590.	2.5	115
46	Zebrafish pronephros: A model for understanding cystic kidney disease. Developmental Dynamics, 2003, 228, 514-522.	1.8	34
47	Alternative splicing affecting a novel domain in the C. elegansEGL-15 FGF receptor confers functional specificity. Development (Cambridge), 2003, 130, 3757-3766.	2.5	48
48	A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects. Human Genetics, 2002, 110, 422-428.	3.8	93
49	Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nature Genetics, 2000, 26, 365-369.	21.4	319
50	A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain. Neuron, 2000, 28, 399-409.	8.1	257
51	Conserved and divergent mechanisms in left–right axis formation. Genes and Development, 2000, 14, 763-776.	5.9	159
52	Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes and Development, 1999, 13, 2527-2537.	5.9	223
53	egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2433-2437.	7.1	116