
Ignacio F Mata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7754491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease. New England Journal of Medicine, 2009, 361, 1651-1661.	27.0	1,747
2	Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations. American Journal of Human Genetics, 2005, 76, 672-680.	6.2	524
3	LRRK2 in Parkinson's disease: protein domains and functional insights. Trends in Neurosciences, 2006, 29, 286-293.	8.6	439
4	APOE ϵ4 Increases Risk for Dementia in Pure Synucleinopathies. JAMA Neurology, 2013, 70, 223.	9.0	302
5	The Genetics of Parkinson Disease. Journal of Geriatric Psychiatry and Neurology, 2010, 23, 228-242.	2.3	259
6	Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics, 2005, 6, 171-177.	1.4	237
7	Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Annals of Neurology, 2008, 64, 88-92.	5.3	207
8	Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92, 329-337.	1.1	194
9	Glucocerebrosidase Gene Mutations. Archives of Neurology, 2008, 65, 379-82.	4.5	188
10	Association of <i>GBA</i> Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology, 2016, 73, 1217.	9.0	185
11	<i>APOE</i> , <i>MAPT</i> , and <i>SNCA</i> Genes and Cognitive Performance in Parkinson Disease. JAMA Neurology, 2014, 71, 1405.	9.0	172
12	<i>GBA</i> Variants are associated with a distinct pattern of cognitive deficits in <scp>P</scp> arkinson's disease. Movement Disorders, 2016, 31, 95-102.	3.9	158
13	SNCA Variant Associated With Parkinson Disease and Plasma α-Synuclein Level. Archives of Neurology, 2010, 67, 1350-6.	4.5	157
14	Parkin genetics: one model for Parkinson's disease. Human Molecular Genetics, 2004, 13, 127R-133.	2.9	153
15	<i>GBA</i> mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology, 2012, 79, 1944-1950.	1.1	138
16	<i>LRRK2</i> mutations in Parkinson disease. Neurology, 2005, 65, 738-740.	1.1	134
17	Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Human Molecular Genetics, 2013, 22, 3259-3268.	2.9	113
18	LRRK2 R1441G in Spanish patients with Parkinson's disease. Neuroscience Letters, 2005, 382, 309-311.	2.1	97

#	Article	IF	CITATIONS
19	Sex differences in progression to mild cognitive impairment and dementia in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 50, 29-36.	2.2	94
20	The RAB39B p.G192R mutation causes X-linked dominant Parkinson's disease. Molecular Neurodegeneration, 2015, 10, 50.	10.8	91
21	Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy, 2018, 14, 1404-1418.	9.1	87
22	LRRK2: a common pathway for parkinsonism, pathogenesis and prevention?. Trends in Molecular Medicine, 2006, 12, 76-82.	6.7	86
23	Association between the TNFα-308 A/G polymorphism and the onset-age of Alzheimer disease. American Journal of Medical Genetics Part A, 2002, 114, 574-577.	2.4	69
24	Dementia in Latin America: Paving the way toward a regional action plan. Alzheimer's and Dementia, 2021, 17, 295-313.	0.8	68
25	Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease. Neuroscience Letters, 2004, 370, 151-154.	2.1	65
26	Replication of <i>MAPT</i> and <i>SNCA</i> , but not <i>PARK16â€18</i> , as susceptibility genes for Parkinson's disease. Movement Disorders, 2011, 26, 819-823.	3.9	64
27	Cognitive profile of <i>LRRK2</i> â€related Parkinson's disease. Movement Disorders, 2015, 30, 728-733.	3.9	64
28	LRRK2 mutations are a common cause of Parkinson's disease in Spain. European Journal of Neurology, 2006, 13, 391-394.	3.3	60
29	<i>LRRK2</i> mutations and risk variants in Japanese patients with Parkinson's disease. Movement Disorders, 2009, 24, 1034-1041.	3.9	60
30	Lrrk2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions. Acta Neuropathologica, 2007, 113, 601-606.	7.7	55
31	Evaluation of mild cognitive impairment subtypes in Parkinson's disease. Movement Disorders, 2014, 29, 756-764.	3.9	53
32	Digenic parkinsonism: Investigation of the synergistic effects of PRKN and LRRK2. Neuroscience Letters, 2006, 410, 80-84.	2.1	52
33	A Search for SNCA 3′ UTR Variants Identified SNP rs356165 as a Determinant of Disease Risk and Onset Age in Parkinson's Disease. Journal of Molecular Neuroscience, 2012, 47, 425-430.	2.3	49
34	Precision Medicine. American Journal of Pathology, 2016, 186, 500-506.	3.8	49
35	Lrrk2-associated parkinsonism is a major cause of disease in Northern Spain. Parkinsonism and Related Disorders, 2007, 13, 509-515.	2.2	48
36	Characterizing the Genetic Architecture of Parkinson's Disease in Latinos. Annals of Neurology, 2021, 90, 353-365.	5.3	48

#	Article	IF	CITATIONS
37	LRRK2 mutations in patients with Parkinson's disease from Peru and Uruguay. Parkinsonism and Related Disorders, 2009, 15, 370-373.	2.2	45
38	Lrrk2 R1441G-related Parkinson's disease: evidence of a common founding event in the seventh century in Northern Spain. Neurogenetics, 2009, 10, 347-353.	1.4	41
39	Clinical traits of LRRK2-associated Parkinson's disease in Ireland: A link between familial and idiopathic PD. Parkinsonism and Related Disorders, 2005, 11, 349-352.	2.2	38
40	Large-scale exploratory genetic analysis of cognitive impairment in Parkinson's disease. Neurobiology of Aging, 2017, 56, 211.e1-211.e7.	3.1	37
41	LARGEâ€PD: Examining the genetics of Parkinson's disease in Latin America. Movement Disorders, 2017, 32, 1330-1331.	3.9	34
42	LRRK2 mutations and Parkinsonism. Lancet, The, 2005, 365, 1229-1230.	13.7	33
43	The distribution and risk effect of GBA variants in a large cohort of PD patients from Colombia and Peru. Parkinsonism and Related Disorders, 2019, 63, 204-208.	2.2	31
44	Alpha-synuclein transcript isoforms in three different brain regions from Parkinson's disease and healthy subjects in relation to the SNCA rs356165/rs11931074 polymorphisms. Neuroscience Letters, 2014, 562, 45-49.	2.1	30
45	Variable frequency of LRRK2 variants in the Latin American research consortium on the genetics of Parkinson's disease (LARGE-PD), a case of ancestry. Npj Parkinson's Disease, 2017, 3, 19.	5.3	28
46	ATP1A3-Related Disorders: An Ever-Expanding Clinical Spectrum. Frontiers in Neurology, 2021, 12, 637890.	2.4	28
47	Screening of cognitive impairment in patients with Parkinson's disease: diagnostic validity of the Brazilian versions of the Montreal Cognitive Assessment and the Addenbrooke's Cognitive Examination-Revised. Arquivos De Neuro-Psiquiatria, 2015, 73, 929-933.	0.8	25
48	Multivariate prediction of dementia in Parkinson's disease. Npj Parkinson's Disease, 2020, 6, 20.	5.3	25
49	Genotype–phenotype correlates in Taiwanese patients with earlyâ€onset recessive parkinsonism. Movement Disorders, 2009, 24, 104-108.	3.9	24
50	Identification of a Japanese family with LRRK2 p.R1441G-related Parkinson's disease. Neurobiology of Aging, 2014, 35, 2656.e17-2656.e23.	3.1	24
51	Single-nucleotide polymorphisms in the promoter region of the PARKIN gene and Parkinson's disease. Neuroscience Letters, 2002, 329, 149-152.	2.1	23
52	C9orf72 Hexanucleotide Repeat Expansion and Guam Amyotrophic Lateral Sclerosis–Parkinsonism-Dementia Complex. JAMA Neurology, 2013, 70, 742.	9.0	22
53	A Peruvian family with a novel PARK2 mutation: Clinical andÂpathological characteristics. Parkinsonism and Related Disorders, 2015, 21, 444-448.	2.2	20
54	Some aspects of the validity of the Montreal Cognitive Assessment (MoCA)for evaluating cognitive impairment in Brazilian patients with Parkinson's disease. Dementia E Neuropsychologia, 2016, 10, 333-338.	0.8	18

#	Article	IF	CITATIONS
55	<i>GCH1</i> in earlyâ€onset Parkinson's disease. Movement Disorders, 2009, 24, 2070-2075.	3.9	17
56	The discovery of <i>LRRK2</i> p.R1441S, a novel mutation for Parkinson's disease, adds to the complexity of a mutational hotspot. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 925-930.	1.7	17
57	Association mapping of the PARK10 region for Parkinson's disease susceptibility genes. Parkinsonism and Related Disorders, 2014, 20, 93-98.	2.2	16
58	When does postural instability appear in monogenic parkinsonisms? An individual-patient meta-analysis. Journal of Neurology, 2021, 268, 3203-3211.	3.6	16
59	Lrrk2 p.Q1111H substitution and Parkinson's disease in Latin America. Parkinsonism and Related Disorders, 2011, 17, 629-631.	2.2	15
60	Genetics of restless legs syndrome. Parkinsonism and Related Disorders, 2006, 12, 1-7.	2.2	14
61	Common variation in the <i>LRRK2</i> gene is a risk factor for Parkinson's disease. Movement Disorders, 2012, 27, 1823-1826.	3.9	14
62	Risk prediction for complex diseases: application to Parkinson disease. Genetics in Medicine, 2013, 15, 361-367.	2.4	14
63	The screening of the 3′UTR sequence of LRRK2 identified an association between the rs66737902 polymorphism and Parkinson's disease. Journal of Human Genetics, 2014, 59, 346-348.	2.3	14
64	Mosaicism of alpha-synuclein gene rearrangements: Report of two unrelated cases of early-onset parkinsonism. Parkinsonism and Related Disorders, 2014, 20, 558-561.	2.2	14
65	Should we start integrating genetic data in decision-making on device-aided therapies in Parkinson disease? A point of view. Parkinsonism and Related Disorders, 2021, 88, 51-57.	2.2	14
66	Genomeâ€Wide Analysis of Copy Number Variation in Latin American Parkinson's Disease Patients. Movement Disorders, 2021, 36, 434-441.	3.9	12
67	Mutational Screening of PARKIN Identified a 3′ UTR Variant (rs62637702) Associated with Parkinson's Disease. Journal of Molecular Neuroscience, 2013, 50, 264-269.	2.3	11
68	Diagnostic prediction model for levodopa-induced dyskinesia in Parkinson's disease. Arquivos De Neuro-Psiquiatria, 2020, 78, 206-216.	0.8	10
69	Intrafamilial variable phenotype including corticobasal syndrome in a family with p.P301L mutation in the MAPT gene: first report in South America. Neurobiology of Aging, 2017, 53, 195.e11-195.e17.	3.1	9
70	Pathogenicity of the Lrrk2 R1514Q substitution in Parkinson's disease. Movement Disorders, 2007, 22, 389-392.	3.9	8
71	Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease. Nitric Oxide - Biology and Chemistry, 2018, 74, 86-90.	2.7	8
72	Novel compound heterozygous FBXO7 mutations in a family with early onset Parkinson's disease. Parkinsonism and Related Disorders, 2020, 80, 142-147.	2.2	8

#	Article	IF	CITATIONS
73	Genetic parkinsonisms and cancer: a systematic review and meta-analysis. Reviews in the Neurosciences, 2021, 32, 159-167.	2.9	8
74	Homozygous partial genomic triplication of the parkin gene in early-onset parkinsonism. Neuroscience Letters, 2005, 380, 257-259.	2.1	7
75	Clinical and molecular studies reveal a PSEN1 mutation (L153V) in a Peruvian family with early-onset Alzheimer's disease. Neuroscience Letters, 2014, 563, 140-143.	2.1	7
76	Genetics of cognitive trajectory in Brazilians: 15 years of follow-up from the BambuÃ-Epigen Cohort Study of Aging. Scientific Reports, 2019, 9, 18085.	3.3	6
77	The UCHL1 S18Y polymorphism and Parkinson's disease in a Japanese population. Parkinsonism and Related Disorders, 2011, 17, 473-475.	2.2	5
78	Clinical and Genetic Analysis of Costa Rican Patients With Parkinson's Disease. Frontiers in Neurology, 2021, 12, 656342.	2.4	4
79	A Review on Response to Device-Aided Therapies Used in Monogenic Parkinsonism and GBA Variants Carriers: A Need for Guidelines and Comparative Studies. Journal of Parkinson's Disease, 2022, 12, 1703-1725.	2.8	4
80	Sensorimotor Inhibition and Mobility in Genetic Subgroups of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 893.	2.4	3
81	Genetics of Parkinson's disease in Brazil: a systematic review of monogenic forms. Arquivos De Neuro-Psiquiatria, 2021, 79, 612-623.	0.8	3
82	Tracing the Distribution of European Lactase Persistence Genotypes Along the Americas. Frontiers in Genetics, 2021, 12, 671079.	2.3	3
83	Polygenic risk prediction and SNCA haplotype analysis in a Latino Parkinson's disease cohort. Parkinsonism and Related Disorders, 2022, 102, 7-15.	2.2	2
84	Novel <scp>Lrrk2</scp> â€p. <scp>S1761R</scp> mutation is not a common cause of Parkinson's disease in Spain. Movement Disorders, 2013, 28, 248-248.	3.9	1
85	Driving genotype treatment options down the right path(way). Movement Disorders, 2019, 34, 1811-1813.	3.9	1
86	Navigating the open sea of commercial genetic testing in Parkinson's Disease. Parkinsonism and Related Disorders, 2021, 92, 105-106.	2.2	1
87	Cognition as a mediator for gait and balance impairments in GBA-related Parkinson's disease. Npj Parkinson's Disease, 2022, 8, .	5.3	1
88	Editorial: Genotype-Phenotype Correlation in Parkinsonian Conditions. Frontiers in Neurology, 2021, 12, 743953.	2.4	0
89	RIC3 variants are not associated with Parkinson's disease in large European, Latin American, or East Asian cohorts. Neurobiology of Aging, 2022, 109, 264-268.	3.1	0
90	Looking back the importance of genetics in a patient with Parkinson disease and deep brain stimulation. Parkinsonism and Related Disorders, 2022, , .	2.2	0