Gao-Lei Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7753634/publications.pdf

Version: 2024-02-01

78	1,131	17 h-index	28
papers	citations		g-index
80	80	80	1087 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Rational design of an argon-binding superelectrophilic anion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8167-8172.	7.1	69
2	Electronic Structure and Stability of [B ₁₂ X ₁₂] ^{2â\in"} (X = Fâ \in "At): A Combined Photoelectron Spectroscopic and Theoretical Study. Journal of the American Chemical Society, 2017, 139, 14749-14756.	13.7	60
3	Negative Ion Photoelectron Spectroscopy Reveals Thermodynamic Advantage of Organic Acids in Facilitating Formation of Bisulfate Ion Clusters: Atmospheric Implications. Journal of Physical Chemistry Letters, 2013, 4, 779-785.	4.6	53
4	Spectroscopic Characterization, Computational Investigation, and Comparisons of ECX $<$ sup $>$ â \in " $<$ /sup $<$ (E = As, P, and N; X = S and O) Anions. Journal of the American Chemical Society, 2017, 139, 8922-8930.	13.7	48
5	The Diagnostics of Laser-Induced Fluorescence (LIF) Spectra of PAHs in Flame with TD-DFT: Special Focus on Five-Membered Ring. Journal of Physical Chemistry A, 2015, 119, 13009-13017.	2.5	46
6	Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores. Nature Communications, 2021, 12, 5231.	12.8	46
7	A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion. Journal of the American Chemical Society, 2016, 138, 6731-6734.	13.7	40
8	Emergence of Solvent-Separated Na ⁺ –Cl [–] lon Pair in Salt Water: Photoelectron Spectroscopy and Theoretical Calculations. Journal of Physical Chemistry Letters, 2017, 8, 13-20.	4.6	37
9	Probing the Low-Lying Electronic States of Cyclobutanetetraone (C ₄ O ₄) and Its Radical Anion: A Low-Temperature Anion Photoelectron Spectroscopic Approach. Journal of Physical Chemistry Letters, 2012, 3, 304-308.	4.6	35
10	Water Splitting by C ₆₀ â€Supported Vanadium Single Atoms. Angewandte Chemie - International Edition, 2021, 60, 27095-27101.	13.8	25
11	Properties of perhalogenated { <i>closo</i> B ₁₀ } and { <i>closo</i> B ₁₁ } multiply charged anions and a critical comparison with { <i>closo</i> B ₁₂ } in the gas and the condensed phase. Physical Chemistry Chemical Physics, 2019, 21, 5903-5915.	2.8	24
12	Communication: Solute anisotropy effects in hydrated anion and neutral clusters. Journal of Chemical Physics, 2013, 138, 031101.	3.0	22
13	Formation of (HCOO [–])(H ₂ SO ₄) Anion Clusters: Violation of Gas-Phase Acidity Predictions. Journal of the American Chemical Society, 2017, 139, 11321-11324.	13.7	22
14	The structures of cationic gold clusters probed by far-infrared spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 11572-11577.	2.8	21
15	Photoelectron spectroscopy and theoretical study of M(IO ₃) ₂ ^{â^'} (M = H, Li, Na, K): Structural evolution, optical isomers, and hyperhalogen behavior. Journal of Chemical Physics, 2013, 139, 044312.	3.0	19
16	Microsolvation of sodium acetate in water: Anion photoelectron spectroscopy and <i>ab initio</i> calculations. Journal of Chemical Physics, 2015, 143, 054302.	3.0	19
17	Negative ion photoelectron spectroscopy confirms the prediction that D _{3h} carbon trioxide (CO ₃) has a singlet ground state. Chemical Science, 2016, 7, 1142-1150.	7.4	19
18	Microsolvation of LiBO2 in water: anion photoelectron spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2015, 17, 9135-9147.	2.8	18

#	Article	IF	CITATIONS
19	Photoelectron Spectroscopy and <i>ab initio</i> Calculations of Li(H ₂ O) _{<i>n</i>} ^{â\in"} and Cs(H ₂ O) _{<i>n</i>} ^{â\in"} (<i>n</i> = 1â \in "6) Clusters. Journal of Physical Chemistry A, 2015, 119, 2845-2856.	2.5	17
20	Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance. Physical Chemistry Chemical Physics, 2017, 19, 10676-10684.	2.8	17
21	Spectroscopic Signature of Proton Location in Proton Bound HSO ₄ [–] ·H ⁺ ·X [–] (X = F, Cl, Br, and I) Clusters. Journal of Physical Chemistry Letters, 2019, 10, 6714-6719.	4.6	17
22	Photoelectron spectroscopy and density functional calculations of CunBO2(OH) \hat{a} ° (n=1,2) clusters. Chemical Physics Letters, 2012, 545, 21-25.	2.6	16
23	Copper Causes Regiospecific Formation of C ₄ F ₈ â€Containing Sixâ€Membered Rings and their Defluorination/Aromatization to C ₄ F ₄ â€Containing Rings in Triphenylene/1,4â€C ₄ F ₈ 1 ₂ Reactions. Chemistry - A European Journal, 2016, 22, 874-877	3.3	16
24	Structural Evolution and Electronic Properties of V _{<i>><i>><i>><i>><i>><i>><i>><i>><i>><i< td=""><td>2.5</td><td>16</td></i<></i></i></i></i></i></i></i></i></i>}	2.5	16
25	Direct Observation of Hierarchic Molecular Interactions Critical to Biogenic Aerosol Formation. Communications Chemistry, 2018, 1, .	4.5	15
26	Observation of the Reaction Intermediates of Methanol Dehydrogenation by Cationic Vanadium Clusters. Angewandte Chemie - International Edition, 2021, 60, 4756-4763.	13.8	15
27	Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications. Journal of Physical Chemistry A, 2016, 120, 2342-2349.	2.5	14
28	Negative ion photoelectron spectroscopy of P ₂ N ₃ ^{â^'} : electron affinity and electronic structures of P ₂ N ₃ Ë™. Chemical Science, 2016, 7, 4667-4675.	7.4	14
29	Infrared Spectroscopy and Mass Spectrometry of CO ₂ Clusters during Nucleation and Growth. Journal of Physical Chemistry A, 2019, 123, 2426-2437.	2.5	14
30	Molecular Specificity and Proton Transfer Mechanisms in Aerosol Prenucleation Clusters Relevant to New Particle Formation. Accounts of Chemical Research, 2020, 53, 2816-2827.	15.6	14
31	Photoelectron spectroscopy of higher bromine and iodine oxide anions: Electron affinities and electronic structures of BrO2,3 and IO2–4 radicals. Journal of Chemical Physics, 2011, 135, 184309.	3.0	13
32	Adsorption of water molecules on sodium chloride trimer. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	13
33	On the dissolution of lithium sulfate in water: anion photoelectron spectroscopy and density functional theory calculations. Physical Chemistry Chemical Physics, 2015, 17, 5624-5631.	2.8	13
34	Examining the structural evolution of bicarbonate–water clusters: insights from photoelectron spectroscopy, basin-hopping structural search, and comparison with available IR spectral studies. Physical Chemistry Chemical Physics, 2016, 18, 17470-17482.	2.8	13
35	Metal-Centered 17-Electron Radicals CpM(CO) ⟨sub⟩3⟨/sub⟩ ⟨sup⟩•⟨/sup⟩ (M = Cr, Mo, W): A Combined Negative Ion Photoelectron Spectroscopic and Theoretical Study. Organometallics, 2013, 32, 2084-2091.	2.3	12
36	Incremental Tuning Up of Fluorous Phenazine Acceptors. Chemistry - A European Journal, 2016, 22, 3930-3936.	3.3	12

#	Article	IF	Citations
37	Probing the early stages of solvation of cis-pinate dianions by water, acetonitrile, and methanol: a photoelectron spectroscopy and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 3628-3637.	2.8	12
38	Initial hydration processes of magnesium chloride: size-selected anion photoelectron spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2017, 19, 15562-15569.	2.8	12
39	A Combined Gasâ€Phase Photoelectron Spectroscopic and Theoretical Study of Zeise's Anion and Its Bromine and Iodine Analogues. Angewandte Chemie - International Edition, 2012, 51, 6356-6360.	13.8	11
40	Negative Ion Photoelectron Spectroscopy Confirms the Prediction that 1,2,4,5-Tetraoxatetramethylenebenzene Has a Singlet Ground State. Journal of the American Chemical Society, 2015, 137, 9094-9099.	13.7	11
41	Initial hydration behavior of sodium iodide dimer: photoelectron spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2016, 18, 557-565.	2.8	11
42	Electrospray ionization photoelectron spectroscopy of cryogenic [EDTA·M(ii)]2â^' complexes (M = Ca,) Tj ETQq	0	Overlock 10
43	Negative ion photoelectron spectra of ISO3–, IS2O3–, and IS2O4– intermediates formed in interfacial reactions of ozone and iodide/sulfite aqueous microdroplets. Journal of Chemical Physics, 2016, 145, 214310.	3.0	10
44	Photoelectron spectroscopy of solvated dicarboxylate and alkali metal ion clusters, M+[O2C(CH2)2CO2]2â [¬] [H2O]n (M = Na, K; n = 1–6). Physical Chemistry Chemical Physics, 2018, 20, 29051-29060.	2.8	10
45	Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine, and Adenine. Journal of Physical Chemistry B, 2015, 119, 11626-11631.	2.6	9
46	Photoelectron spectroscopic and computational studies of [EDTA·M(⟨scp⟩iii⟨ scp⟩)]⟨sup⟩∲⟨ sup⟩ complexes (M = H⟨sub⟩3⟨ sub⟩, Al, Sc, V–Co). Physical Chemistry Chemical Physics, 2018, 20, 19458-19469.	2.8	9
47	Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission. Journal of Chemical Physics, 2015, 143, 184307.	3.0	8
48	Sulfuric acid and aromatic carboxylate clusters H2SO4·ArCOOâ^': Structures, properties, and their relevance to the initial aerosol nucleation. International Journal of Mass Spectrometry, 2019, 439, 27-33.	1.5	8
49	Photoelectron Spectroscopy of CoC ₂ H ₂ ^{â€"} and Density Functional Study of Co _{<i>n</i>} C ₂ H ₂ (<i>n</i> = 1â€"3) Anion and Neutral Clusters. Journal of Physical Chemistry A, 2014, 118, 6757-6762.	2.5	7
50	Hydration of potassium iodide dimer studied by photoelectron spectroscopy and <i>ab initio</i> calculations. Journal of Chemical Physics, 2016, 145, 184307.	3.0	7
51	Negative Ion Photoelectron Spectroscopy Reveals Remarkable Noninnocence of Ligands in Nickel Bis(dithiolene) Complexes [Ni(dddt)2]â^' and [Ni(edo)2]â^'. Journal of Physical Chemistry A, 2016, 120, 2854-2862.	2.5	7
52	Rotational characterization of Sâ <f 2,2,4,4-tetrafluoro-1,3-dithietane="" 2019,="" 21,="" 24659-24665.<="" and="" bonds="" chalcogen="" chemical="" chemistry="" complex="" difluoromethane.="" in="" of="" physical="" physics,="" td="" the=""><td>2.8</td><td>7</td></f>	2.8	7
53	Unveiling the role of C60-supported vanadium single atoms for catalytic overall water splitting. Cell Reports Physical Science, 2022, 3, 100910.	5.6	7
54	Infrared spectra and structures of C60Rhn+ complexes. Carbon, 2022, 197, 535-543.	10.3	7

#	Article	IF	Citations
55	Photodissociation and DFT investigation of V+(C2H4)n (n= $1\hat{a}\in$ "3) complexes. International Journal of Mass Spectrometry, 2010, 295, 36-42.	1.5	6
56	A Joint Experimental and Computational Study of the Negative Ion Photoelectron Spectroscopy of the 1-Phospha-2,3,4-triazolate Anion, HCPN⟨sub⟩⟨sub⟩⟨sub⟩⟨sup⟩–⟨ sup⟩⟩. Journal of Physical Chemistry A, 2016, 120, 6228-6235.	2.5	6
57	Negative Ion Photoelectron Spectroscopy Confirms the Prediction of a Singlet Ground State for the 1,8-Naphthoquinone Diradical. Journal of Physical Chemistry A, 2019, 123, 3142-3148.	2.5	6
58	Potassium iodide cluster based superhalogens and superalkalis: Theoretical calculations and experimental confirmation. Chemical Physics Letters, 2020, 741, 137094.	2.6	6
59	Structures of Al+(C2H4)n clusters: Mass-selected photodissociation and ab initio calculations. International Journal of Mass Spectrometry, 2012, 309, 49-55.	1.5	5
60	Examining the Amine Functionalization in Dicarboxylates: Photoelectron Spectroscopy and Theoretical Studies of Aspartate and Glutamate. Journal of Physical Chemistry A, 2014, 118, 5256-5262.	2.5	5
61	Experimental and Theoretical Studies of the F [•] + H–F Transition-State Region by Photodetachment of [F–H–F] ^ⰳ . Journal of Physical Chemistry A, 2017, 121, 7895-7902.	2.5	5
62	Negative Ion Photoelectron Spectroscopy Confirms the Prediction of the Relative Energies of the Low-Lying Electronic States of 2,7-Naphthoquinone. Journal of Physical Chemistry A, 2018, 122, 4838-4844.	2.5	5
63	Distonic radical anion species in cysteine oxidation processes. Physical Chemistry Chemical Physics, 2020, 22, 17554-17558.	2.8	5
64	Stable Noble Gas Compounds Based on Superelectrophilic Anions [B ₁₂ (BO) ₁₁] ^{â^'} and [B ₁₂ (OBO) ₁₁] ^{â^'} . ChemPhysChem, 2021, 22, 2240-2246.	2.1	5
65	Deviation from the <i>trans</i> -Effect in Ligand-Exchange Reactions of Zeise's Ions PtCl ₃ (C ₂ H ₄) ^{â^'} with Heavier Halides (Br [–] ,) Tj	E T @q11	0. 7 84314 rg
66	Observation of the Reaction Intermediates of Methanol Dehydrogenation by Cationic Vanadium Clusters. Angewandte Chemie, 2021, 133, 4806-4813.	2.0	4
67	Enhanced Two-Photon Absorption in Two Triphenylamine-Based All-Organic Compounds. Journal of Physical Chemistry A, 2021, 125, 1870-1879.	2.5	4
68	Stabilizing the Exotic Carbonic Acid by Bisulfate Ion. Molecules, 2022, 27, 8.	3.8	4
69	Structures and Electronic Properties of (KI) _{<i>n</i>} ^{â\in"/0} (<i>n</i> = 1â \in "4) and K(KI) _{<i>n</i>} <i>Photoelectron Spectroscopy, Isomer-Depletion, and ab Initio Calculations. Journal of Physical Chemistry A, 2015, 119, 11154-11161.</i>	2.5	3
70	The size-dependent influence of palladium doping on the structures of cationic gold clusters. Nanoscale Advances, 2021, 3, 6197-6205.	4.6	3
71	Regioisomer-specific electron affinities and electronic structures of C70para-adducts at polar and equatorial positions with (bromo)benzyl radicals: photoelectron spectroscopy and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 18683-18686.	2.8	1
72	Effect of One-Coordinated Atoms on the Electronic and Optical Properties of ZnSe Clusters. ACS Omega, 2021, 6, 18711-18718.	3 . 5	1

#	Article	IF	CITATIONS
73	Photoionization Spectroscopic and Theoretical Study on the Molecular Structures of <i>cis-</i> and <i>trans-</i> 3-Chlorothioanisole. ACS Omega, 2022, 7, 8456-8465.	3.5	1
74	Titelbild: A Combined Gas-Phase Photoelectron Spectroscopic and Theoretical Study of Zeise's Anion and Its Bromine and Iodine Analogues (Angew. Chem. 26/2012). Angewandte Chemie, 2012, 124, 6385-6385.	2.0	0
75	Frontispiece: Incremental Tuning Up of Fluorous Phenazine Acceptors. Chemistry - A European Journal, 2016, 22, .	3.3	O
76	Designing stable <i>closo</i> -B ₁₂ dianions <i>in silico</i> for Li- and Mg-ion battery applications. Inorganic Chemistry Frontiers, 2021, 8, 5201-5208.	6.0	0
77	Water Splitting by a C60 Supported Single Vanadium Atom. Angewandte Chemie, 0, , .	2.0	O
78	Substitution-induced Nonplanarity of 3-Fluorothioanisole in the First Electronically Excited State. Journal of Physical Chemistry A, 2022, 126, 2541-2550.	2.5	0