
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752344/publications.pdf Version: 2024-02-01

HIDY VAN DE WATED

#	Article	IF	CITATIONS
1	Neonatal chemokine markers predict subsequent diagnosis of autism spectrum disorder and delayed development. Brain, Behavior, and Immunity, 2022, 100, 121-133.	4.1	8
2	Mast Cell Chymase/Mcpt4 Suppresses the Host Immune Response to Plasmodium yoelii, Limits Malaria-Associated Disruption of Intestinal Barrier Integrity and Reduces Parasite Transmission to Anopheles stephensi. Frontiers in Immunology, 2022, 13, 801120.	4.8	4
3	Maternal autoantibody profiles as biomarkers for ASD and ASD with co-occurring intellectual disability. Molecular Psychiatry, 2022, 27, 3760-3767.	7.9	10
4	Maternal Immune Dysregulation and Autism–Understanding the Role of Cytokines, Chemokines and Autoantibodies. Frontiers in Psychiatry, 2022, 13, .	2.6	9
5	Pilot Study of Maternal Autoantibody–Related Autism. Journal of Developmental and Behavioral Pediatrics, 2022, 43, 465-471.	1.1	3
6	Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Molecular Psychiatry, 2021, 26, 875-887.	7.9	14
7	Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biological Psychiatry, 2021, 89, 896-910.	1.3	21
8	Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Molecular Psychiatry, 2021, 26, 1551-1560.	7.9	31
9	A profile and review of findings from the Early Markers for Autism study: unique contributions from a population-based case–control study in California. Molecular Autism, 2021, 12, 24.	4.9	8
10	Sequential perturbations to mouse corticogenesis following in utero maternal immune activation. ELife, 2021, 10, .	6.0	17
11	Sexually dimorphic neuroanatomical differences relate to ASD-relevant behavioral outcomes in a maternal autoantibody mouse model. Molecular Psychiatry, 2021, 26, 7530-7537.	7.9	12
12	Malaria-induced bacteremia as a consequence of multiple parasite survival strategies. Current Research in Microbial Sciences, 2021, 2, 100036.	2.3	5
13	Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. Journal of Neuroscience, 2021, 41, 9971-9987.	3.6	29
14	Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Molecular Psychiatry, 2020, 25, 2994-3009.	7.9	42
15	Neonatal Thyroid Stimulating Hormone and Subsequent Diagnosis of Autism Spectrum Disorders and Intellectual Disability. Autism Research, 2020, 13, 444-455.	3.8	9
16	Peptides of neuron specific enolase as potential ASD biomarkers: From discovery to epitope mapping. Brain, Behavior, and Immunity, 2020, 84, 200-208.	4.1	21
17	The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Current Research in Toxicology, 2020, 1, 85-103.	2.7	12
18	Biodistribution and toxicity of epitopeâ€functionalized dextran iron oxide nanoparticles in a pregnant murine model. Journal of Biomedical Materials Research - Part A, 2020, 108, 1186-1202.	4.0	9

JUDY VAN DE WATER

#	Article	IF	CITATIONS
19	Translational opportunities in the prenatal immune environment: Promises and limitations of the maternal immune activation model. Neurobiology of Disease, 2020, 141, 104864.	4.4	34
20	Baseline immunoreactivity before pregnancy and poly(I:C) dose combine to dictate susceptibility and resilience of offspring to maternal immune activation. Brain, Behavior, and Immunity, 2020, 88, 619-630.	4.1	36
21	Nonlethal Plasmodium yoelii Infection Drives Complex Patterns of Th2-Type Host Immunity and Mast Cell-Dependent Bacteremia. Infection and Immunity, 2020, 88, .	2.2	8
22	Maternal immune response and air pollution exposure during pregnancy: insights from the Early Markers for Autism (EMA) study. Journal of Neurodevelopmental Disorders, 2020, 12, 42.	3.1	23
23	Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Current Pharmaceutical Design, 2020, 25, 4331-4343.	1.9	24
24	Maternal autoantibody related autism: mechanisms and pathways. Molecular Psychiatry, 2019, 24, 252-265.	7.9	44
25	Towards a nanoparticle-based prophylactic for maternal autoantibody-related autism. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102067.	3.3	4
26	Acute peripheral immune activation alters cytokine expression and glial activation in the early postnatal rat brain. Journal of Neuroinflammation, 2019, 16, 200.	7.2	23
27	An Exploratory Examination of Neonatal Cytokines and Chemokines as Predictors of Autism Risk: The Early Markers for Autism Study. Biological Psychiatry, 2019, 86, 255-264.	1.3	63
28	Identification of the antigenic epitopes of maternal autoantibodies in autism spectrum disorders. Brain, Behavior, and Immunity, 2018, 69, 399-407.	4.1	21
29	Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain, Behavior, and Immunity, 2018, 70, 354-368.	4.1	163
30	A Prospective Study of Environmental Exposures and Early Biomarkers in Autism Spectrum Disorder: Design, Protocols, and Preliminary Data from the MARBLES Study. Environmental Health Perspectives, 2018, 126, 117004.	6.0	77
31	Cross-genetic determination of maternal and neonatal immune mediators during pregnancy. Genome Medicine, 2018, 10, 67.	8.2	27
32	Neonatal Cytokine Profiles Associated With Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, 442-451.	1.3	171
33	Immune Endophenotypes in Children With Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, 434-441.	1.3	105
34	Autismâ€specific maternal antiâ€fetal brain autoantibodies are associated with metabolic conditions. Autism Research, 2017, 10, 89-98.	3.8	32
35	Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain, Behavior, and Immunity, 2017, 63, 60-70.	4.1	97
36	The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology, 2017, 42, 284-298.	5.4	346

#	Article	IF	CITATIONS
37	Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, 383-390.	1.3	114
38	Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder. Frontiers in Pediatrics, 2017, 5, 43.	1.9	70
39	Maternal autoimmune antibodies alter the dendritic arbor and spine numbers in the infragranular layers of the cortex. PLoS ONE, 2017, 12, e0183443.	2.5	16
40	Prenatal and Newborn Immunoglobulin Levels from Mother-Child Pairs and Risk of Autism Spectrum Disorders. Frontiers in Neuroscience, 2016, 10, 218.	2.8	17
41	Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals. Cerebral Cortex, 2016, 26, 374-383.	2.9	51
42	Risk factors in autism: Thinking outside the brain. Journal of Autoimmunity, 2016, 67, 1-7.	6.5	102
43	Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. Journal of Neuroimmunology, 2015, 286, 33-41.	2.3	74
44	Maternal Anti-Fetal Brain IgG Autoantibodies and Autism Spectrum Disorder: Current Knowledge and its Implications for Potential Therapeutics. CNS Drugs, 2015, 29, 715-724.	5.9	42
45	Maternal Infection During Pregnancy and Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2015, 45, 4015-4025.	2.7	210
46	Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behavioural Brain Research, 2014, 266, 46-51.	2.2	42
47	Brief Report: Antibodies Reacting to Brain Tissue in Basque Spanish Children with Autism Spectrum Disorder and Their Mothers. Journal of Autism and Developmental Disorders, 2014, 44, 459-465.	2.7	14
48	Neonatal cytokines and chemokines and risk of Autism Spectrum Disorder: the Early Markers for Autism (EMA) study: a case-control study. Journal of Neuroinflammation, 2014, 11, 113.	7.2	97
49	Maternal Autoantibodies in Autism Spectrum Disorder. , 2014, , 429-449.		0
50	Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain, Behavior, and Immunity, 2013, 30, 61-65.	4.1	85
51	Maternal Autoantibodies in Autism. Archives of Neurology, 2012, 69, 693-9.	4.5	105
52	Decreased levels of total immunoglobulin in children with autism are not a result of B cell dysfunction. Journal of Neuroimmunology, 2012, 251, 94-102.	2.3	21
53	Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. Journal of Neuroimmunology, 2012, 252, 56-65.	2.3	61
54	Behavioral Correlates of Maternal Antibody Status Among Children with Autism. Journal of Autism and Developmental Disorders, 2012, 42, 1435-1445.	2.7	91

#	Article	IF	CITATIONS
55	Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, Behavior, and Immunity, 2011, 25, 40-45.	4.1	704
56	Altered T cell responses in children with autism. Brain, Behavior, and Immunity, 2011, 25, 840-849.	4.1	217
57	Autoantibodies to cerebellum in children with autism associate with behavior. Brain, Behavior, and Immunity, 2011, 25, 514-523.	4.1	111
58	Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain, Behavior, and Immunity, 2011, 25, 1123-1135.	4.1	46
59	Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. Journal of Neuroimmunology, 2011, 232, 196-199.	2.3	235
60	Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Molecular Autism, 2011, 2, 13.	4.9	284
61	Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism. Molecular Autism, 2011, 2, 5.	4.9	46
62	In Search of Cellular Immunophenotypes in the Blood of Children with Autism. PLoS ONE, 2011, 6, e19299.	2.5	107
63	The immune system's role in the biology of autism. Current Opinion in Neurology, 2010, 23, 111-117.	3.6	211
64	Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain, Behavior, and Immunity, 2009, 23, 64-74.	4.1	141
65	Brief Report: Plasma Leptin Levels are Elevated in Autism: Association with Early Onset Phenotype?. Journal of Autism and Developmental Disorders, 2008, 38, 169-175.	2.7	77
66	Brainâ€derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) study. Autism Research, 2008, 1, 130-137.	3.8	57
67	Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Research, 2008, 1, 275-283.	3.8	161
68	Maternal Mid-Pregnancy Autoantibodies to Fetal Brain Protein: The Early Markers for Autism Study. Biological Psychiatry, 2008, 64, 583-588.	1.3	154
69	Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain, Behavior, and Immunity, 2008, 22, 806-816.	4.1	203
70	Peripheral Blood Leukocyte Production of BDNF following Mitogen Stimulation in Early Onset and Regressive Autism. American Journal of Biochemistry and Biotechnology, 2008, 4, 121-129.	0.4	20
71	Detection of IL-17 and IL-23 in Plasma Samples of Children with Autism. American Journal of Biochemistry and Biotechnology, 2008, 4, 114-120.	0.4	40
72	Autism: Maternally derived antibodies specific for fetal brain proteins. NeuroToxicology, 2007, 29, 226-31.	3.0	216

JUDY VAN DE WATER

#	Article	IF	CITATIONS
73	Polyurethane Shape-Memory Polymers Demonstrate Functional Biocompatibility In Vitro. Macromolecular Bioscience, 2007, 7, 48-55.	4.1	64
74	Brain‣pecific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 2007, 1107, 92-103.	3.8	134
75	The CHARGE Study: An Epidemiologic Investigation of Genetic and EnvironmentalFactors Contributing to Autism. Environmental Health Perspectives, 2006, 114, 1119-1125.	6.0	352
76	Maternal Autoimmune Diseases, Asthma and Allergies, and Childhood Autism Spectrum Disorders. JAMA Pediatrics, 2005, 159, 151-7.	3.0	311
77	Myeloperoxidase-positive inflammatory cells participate in bile duct damage in primary biliary cirrhosis through nitric oxide-mediated reactions. Hepatology, 2003, 38, 1018-1025.	7.3	53
78	Characterization of recombinant monoclonal IgA anti-PDC-E2 autoantibodies derived from patients with PBC. Hepatology, 2002, 36, 1383-1392.	7.3	35
79	Contribution to antimitochondrial antibody production: Cleavage of pyruvate dehydrogenase complex-E2 by apoptosis-related proteases. Hepatology, 2002, 35, 14-22.	7.3	48
80	Heterogeneous response of antimitochondrial autoantibodies and bile duct apical staining monoclonal antibodies to pyruvate dehydrogenase complex E2: The molecule versus the mimic. Hepatology, 2001, 33, 792-801.	7.3	54
81	Evidence for a locally driven mucosal response and the presence of mitochondrial antigens in saliva in primary biliary cirrhosis. Hepatology, 2000, 31, 24-29.	7.3	82
82	Generation of monoclonal antibodies to murine bile duct epithelial cells: Identification of annexin V as a new marker of small intrahepatic bile ducts. Hepatology, 1999, 29, 1019-1025.	7.3	23
83	Characterization of antimitochondrial antibodies in healthy adults. Hepatology, 1998, 27, 656-661.	7.3	136
84	Primary Biliary Cirrhosis an E pi thelitis: Evidence of Abnormal Salivary Gland Immunohistochemistry. Autoimmunity, 1997, 26, 23-31.	2.6	28
85	Clinicopathological study of primary biliary cirrhosis negative for antimitochondrial antibodies. Liver, 1997, 17, 281-287.	0.1	46
86	Granulomatous cholangitis in chronic hepatitis C: A new diagnostic problem in liver pathology. Pathology International, 1996, 46, 301-305.	1.3	16
87	Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression. Hepatology, 1995, 21, 1031-1037.	7.3	97
88	Immunohistochemical analysis of adhesion molecules in the microâ€environment of portal tracts in relation to aberrant expression of PDCâ€E2 and HLAâ€DR on the bile ducts in primary biliary cirrhosis. Journal of Pathology, 1995, 175, 319-325.	4.5	77
89	Animal Models of Scleroderma: Contrasts and Comparisons. International Reviews of Immunology, 1995, 12, 201-216.	3.3	20
90	The Immunologic and Genetic Basis of Avian Scleroderma, an Inherited Fibrotic Disease of Line 200 Chickens. International Reviews of Immunology, 1994, 11, 273-282.	3.3	5

6

#	Article	IF	CITATIONS
91	Heterogeneity of combinatorial human autoantibodies against PDC-E2 and biliary epithelial cells in patients with primary biliary cirrhosis. Hepatology, 1994, 20, 574-583.	7.3	44
92	Human combinatorial autoantibodies and mouse monoclonal antibodies to PDC-E2 produce abnormal apical staining of salivary glands in patients with coexistent primary biliary cirrhosis and Sjogren's syndrome. Hepatology, 1994, 20, 893-898.	7.3	44
93	An autoantigen in PSC? Whither or whether? Mandal A, Dasgupta A, Jeffers L, Squillante L, Hyder S, Reddy R, Schiff E, Das KM. Autoantibodies in sclerosing cholangitis against a shared peptide in biliary and colon epithelium. Gastroenterology 1994;106:185–192. Hepatology, 1994, 20, 1096-1098.	7.3	1
94	Genes within the HLA class II region confer both predisposition and resistance to primary biliary cirrhosis. Tissue Antigens, 1994, 43, 71-77.	1.0	79
95	Molecular characterization of the mitochondrial autoantigens in primary biliary cirrhosis. Immunologic Research, 1991, 10, 518-527.	2.9	24
96	Analysis of hepatic T lymphocyte and immunoglobulin deposits in patients with primary biliary cirrhosis. Hepatology, 1990, 12, 306-313.	7.3	114
97	Identification of t cells in early dermal lymphocytic infiltrates in avian scleroderma. Arthritis and Rheumatism, 1989, 32, 1031-1040.	6.7	32