Curtis C Daehler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance Comparisons of Co-Occurring Native and Alien Invasive Plants: Implications for Conservation and Restoration. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 183-211.	8.3	1,049
2	Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution, 2014, 29, 260-269.	8.7	536
3	Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 2009, 7, 479-486.	4.0	346
4	A Risk-Assessment System for Screening Out Invasive Pest Plants from Hawaii and Other Pacific Islands. Conservation Biology, 2004, 18, 360-368.	4.7	273
5	Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 656-661.	7.1	257
6	Selecting predictors to maximize the transferability of species distribution models: lessons from crossâ€continental plant invasions. Global Ecology and Biogeography, 2017, 26, 275-287.	5.8	175
7	Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alpine Botany, 2016, 126, 89-103.	2.4	166
8	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	9.5	145
9	Title is missing!. Biological Invasions, 2000, 2, 93-102.	2.4	139
10	Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions, 2016, 18, 345-353.	2.4	127
11	Processes at multiple scales affect richness and similarity of nonâ€native plant species in mountains around the world. Global Ecology and Biogeography, 2012, 21, 236-246.	5.8	120
12	Upper-montane plant invasions in the Hawaiian Islands: Patterns and opportunities. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 203-216.	2.7	105
13	Short Lag Times for Invasive Tropical Plants: Evidence from Experimental Plantings in Hawai'i. PLoS ONE, 2009, 4, e4462.	2.5	81
14	Prediction and biological invasions. Trends in Ecology and Evolution, 1993, 8, 380.	8.7	68
15	Invasive slugs as under-appreciated obstacles to rare plant restoration: evidence from the Hawaiian Islands. Biological Invasions, 2008, 10, 245-255.	2.4	67
16	Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications. PeerJ, 2018, 6, e4576.	2.0	60
17	Experimental Restoration of an Indigenous Hawaiian Grassland after Invasion by Buffel Grass (Cenchrus ciliaris). Restoration Ecology, 2005, 13, 380-389.	2.9	56
18	Hawaiian ant–flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecological Monographs, 2011, 81, 295-311.	5.4	52

CURTIS C DAEHLER

#	Article	IF	CITATIONS
19	The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion. Diversity and Distributions, 2005, 11, 319-331.	4.1	47
20	Influence of woody invader control methods and seed availability on native and invasive species establishment in a Hawaiian forest. Biological Invasions, 2008, 10, 805-819.	2.4	42
21	Evolution of a new ecotype of Spartina alterniflora (Poaceae) in San Francisco Bay, California, USA. American Journal of Botany, 1999, 86, 543-546.	1.7	40
22	A Metric for Analyzing Taxonomic Patterns of Extinction Risk. Conservation Biology, 2002, 16, 1137-1142.	4.7	40
23	Title is missing!. Plant Ecology, 2002, 161, 147-156.	1.6	35
24	Introduced weed richness across altitudinal gradients in Hawai'i: humps, humans and water-energy dynamics. Biological Invasions, 2010, 12, 4019-4031.	2.4	33
25	An upward elevation shift of native and nonâ€native vascular plants over 40Âyears on the island of Hawai'i. Journal of Vegetation Science, 2017, 28, 939-950.	2.2	33
26	Intraâ€floral resource partitioning between endemic and invasive flower visitors: consequences for pollinator effectiveness. Ecological Entomology, 2010, 35, 760-767.	2.2	32
27	Exotic flower visitors exploit large floral trait spaces resulting in asymmetric resource partitioning with native visitors. Functional Ecology, 2017, 31, 2244-2254.	3.6	30
28	Genetic variation in an apomictic grass, Heteropogon contortus, in the Hawaiian Islands. Molecular Ecology, 1999, 8, 2127-2132.	3.9	29
29	Biology and Impacts of Pacific Island Invasive Species. 10.Iguana iguana, the Green Iguana (Squamata:) Tj ETQq1	1 8.7843	14 _{.2} gBT /Ove
30	Human impact, climate and dispersal strategies determine plant invasion on islands. Journal of Biogeography, 2021, 48, 1889-1903.	3.0	23
31	Influence of Invasive Tree Kill Rates on Native and Invasive Plant Establishment in a Hawaiian Forest. Restoration Ecology, 2007, 15, 199-211.	2.9	22
32	Response to Comment on "Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders― Science, 2012, 338, 193-193.	12.6	21
33	Life history variation in a temperate plant invader, Verbascum thapsus along a tropical elevational gradient in Hawaii. Biological Invasions, 2010, 12, 4033-4047.	2.4	20
34	Performance of the herb <i>Verbascum thapsus</i> along environmental gradients in its native and nonâ€native ranges. Journal of Biogeography, 2015, 42, 132-143.	3.0	20
35	Moving up and over: redistribution of plants in alpine, Arctic, and Antarctic ecosystems under global change. Arctic, Antarctic, and Alpine Research, 2020, 52, 651-665.	1.1	19
36	Invasive Melinis minutiflora outperforms native species, but the magnitude of the effect is context-dependent. Biological Invasions, 2019, 21, 657-667.	2.4	16

CURTIS C DAEHLER

#	Article	IF	CITATIONS
37	The <i>Mountain Invasion Research Network (MIREN)</i> . Linking Local and Global Scales for Addressing an Ecological Consequence of Global Change. Gaia, 2014, 23, 263-265.	0.7	15
38	Global and regional nested patterns of nonâ€native invasive floras on tropical islands. Journal of Biogeography, 2014, 41, 823-832.	3.0	14
39	Plant invasions: theoretical and practical challenges. Biological Invasions, 2010, 12, 3907-3911.	2.4	13
40	Forest Invasion by the African Tulip Tree (<i>Spathodea campanulata</i>) in the Hawaiian Islands: Are Seedlings Shade-Tolerant?. Pacific Science, 2014, 68, 345-358.	0.6	13
41	Preâ€damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii. Ecology, 2017, 98, 3011-3021.	3.2	12
42	Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecology and Evolution, 2022, 12, e8590.	1.9	11
43	Long-term decline of native tropical dry forest remnants in an invaded Hawaiian landscape. Biodiversity and Conservation, 2019, 28, 1699-1716.	2.6	5
44	A screening system to predict wildfire risk of invasive plants. Biological Invasions, 0, , 1.	2.4	5
45	Fasciation in Invading Common Mullein,Verbascum thapsus(Scrophulariaceae): Testing the Roles of Genetic and Environmental Factors. Pacific Science, 2011, 65, 451-463.	0.6	1
46	Plant naturalization trends reflect socioeconomic history and show a high likelihood of inter-island spread in Hawaiâ€ĩi. Invasive Plant Science and Management, 2021, 14, 135-146.	1.1	1
47	Seed Rain, Dispersal Distance, and Germination of the Invasive Tree Spathodea campanulata on the Island of Tahiti, French Polynesia (South Pacific). Pacific Science, 2021, 74, .	0.6	0