
Agnieszka DÄbrowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7751650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel nanocarbons via facile one-pot combustion synthesis. Diamond and Related Materials, 2022, 121, 108746.	3.9	1
2	Plastic in digestive tracts and gills of cod and herring from the Baltic Sea. Science of the Total Environment, 2022, 822, 153333.	8.0	15
3	Plant-Oil-Based Fibre Composites for Boat Hulls. Materials, 2022, 15, 1699.	2.9	12
4	The first evidence of the Indian meal moth (Plodia interpunctella) interaction with the silicone moulds. Chemosphere, 2022, 299, 134451.	8.2	0
5	The Raman Spectroscopy Approach to Different Freshwater Microplastics and Quantitative Characterization of Polyethylene Aged in the Environment. Microplastics, 2022, 1, 263-282.	4.2	15
6	Green composites for the marine environment: From microplastics pollution to sustainable materials. , 2022, , 195-207.		1
7	Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Science of the Total Environment, 2021, 762, 143111.	8.0	70
8	Do the graphene nanoflakes pose a potential threat to the polychaete Hediste diversicolor?. Chemosphere, 2021, 269, 128685.	8.2	10
9	Marine Microplastics: Chemical, Physical, Biological, and Social Perspectives. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-14.	0.1	0
10	Otrzymywanie nanomateriaÅ,ów przez magnezotermicznÄ… redukcjÄ™ mineraÅ,ów. Przemysl Chemiczny, 202 1, 64-70.	21 _{0.0}	0
11	The ghost nets phenomena from the chemical perspective. Pure and Applied Chemistry, 2021, 93, 479-496.	1.9	5
12	A roadmap for a Plastisphere. Marine Pollution Bulletin, 2021, 167, 112322.	5.0	15
13	Raman Spectroscopy of Marine Microplastics - A short comprehensive compendium for the environmental scientists. Marine Environmental Research, 2021, 168, 105313.	2.5	22
14	The Proposal and Necessity of the Numerical Description of Nano- and Microplastics' Surfaces (Plastisphere). Polymers, 2021, 13, 2255.	4.5	4
15	Marine Microplastics in Polar Region—a Spitsbergen Case Study. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	6
16	Microplastics on sandy beaches of the southern Baltic Sea. Marine Pollution Bulletin, 2020, 155, 111170.	5.0	78
17	Marine Microplastics at Santuario Pelagos. Springer Water, 2020, , 193-197.	0.3	1
18	Holistic Approach to the Marine Microplastics: Sampling, Characterization, Consequences. Springer Water, 2020, , 187-192.	0.3	1

#	Article	IF	CITATIONS
19	The marine nano- and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Marine Pollution Bulletin, 2019, 148, 210-216.	5.0	124
20	New insight on carbonisation and graphitisation mechanisms as obtained from a bottom-up analytical approach of X-ray diffraction patterns. Carbon, 2019, 147, 602-611.	10.3	39
21	Nanocarbon/epoxy composites: Preparation, properties, and applications. , 2019, , 421-448.		6
22	Graphene‣ike Carbon Nanostructures From Combustion Synthesis. Physica Status Solidi (B): Basic Research, 2018, 255, 1800194.	1.5	2
23	One-Step Combustion Synthesis of Novel Nanocarbons via Magnesiothermic Reduction of Carbon-Containing Oxidants. International Journal of Self-Propagating High-Temperature Synthesis, 2018, 27, 72-76.	0.5	2
24	Synthesis of 3-D Graphene via Combustion Synthesis of Magnesium and Calcium/Magnesium Oxalates. ECS Journal of Solid State Science and Technology, 2017, 6, M3090-M3096.	1.8	8
25	Biomimetyzm i nanotechnologia - materiaÅ,y i rozwiÄzania inspirowane naturÄ PrzeglÄd Mechaniczny, 2017 1, 11-15.	, 0.0	0
26	Selfâ€propagating highâ€ŧemperature fast reduction of magnesium oxalate to novel nanocarbons. Physica Status Solidi (B): Basic Research, 2016, 253, 2486-2491.	1.5	11
27	Efficient one-pot combustion synthesis of few-layered graphene. Physica Status Solidi (B): Basic Research, 2015, 252, 2412-2417.	1.5	8
28	Preparation of SiC _w -ZTA Composites by Two-Step Sintering or Spark Plasma Sintering. Solid State Phenomena, 2015, 226, 59-64.	0.3	0
29	Mechanical and thermal properties of epoxy/silicon carbide nanofiber composites. Polymers for Advanced Technologies, 2015, 26, 142-146.	3.2	21
30	Nanocomposites of epoxy resin with graphene nanoplates and exfoliated graphite: Synthesis and electrical properties. Physica Status Solidi (B): Basic Research, 2014, 251, 2599-2602.	1.5	54
31	Self-propagating high-temperature synthesis (SHS) of crystalline nanomaterials. Journal of Crystal Growth, 2014, 401, 469-473.	1.5	22
32	In situ diagnostics of the SiC nanostructures growth process. Journal of Crystal Growth, 2014, 401, 376-380.	1.5	8
33	Facile and fast combustion synthesis and characterization of novel carbon nanostructures. Physica Status Solidi (B): Basic Research, 2014, 251, 2563-2568.	1.5	8
34	SiC Nanofibres Produced by the Combustion Synthesis as the Nanocomposites Fillers. Macromolecular Symposia, 2013, 327, 94-98.	0.7	3
35	Toward green chemistry: A new approach to the synthesis of semiconducting SiC nanowires. Physica Status Solidi (B): Basic Research, 2013, 250, 2713-2716.	1.5	6
36	Preliminary studies on nanocomposite based on high quality Silicon Carbide nanofibers. , 2012, , .		1

#	Article	IF	CITATIONS
37	Fast and efficient combustion synthesis route to produce novel nanocarbons. Physica Status Solidi (B): Basic Research, 2012, 249, 2373-2377.	1.5	23
38	Ultra-fast efficient synthesis of one-dimensional nanostructures. Physica Status Solidi (B): Basic Research, 2011, 248, 2704-2707.	1.5	19
39	Spontaneous formation and characterization of silicon carbide nanowires produced via thermolysis. Physica Status Solidi (B): Basic Research, 2011, 248, 2708-2711.	1.5	5
40	Ultrafast self-catalytic growth of silicon carbide nanowires. Journal of Materials Research, 2011, 26, 3065-3071.	2.6	11
41	Combustion synthesis of oneâ€dimensional nanocrystalline silicon carbide. Crystal Research and Technology, 2010, 45, 1241-1244.	1.3	15
42	Alâ€doped ZnO nanofilms: Synthesis and characterization. Physica Status Solidi (B): Basic Research, 2010, 247, 3035-3038.	1.5	3
43	Silicon carbide nanowires: synthesis and cathodoluminescence. Physica Status Solidi (B): Basic Research, 2009, 246, 2806-2808.	1.5	35
44	Battery Powder as a Source of Novel Graphene Nanocarbons. Physica Status Solidi (B): Basic Research, 0, , .	1.5	0