
Malcolm Whiteway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/775143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphogenesis inCandida albicans. Annual Review of Microbiology, 2007, 61, 529-553.	7.3	349
2	Transcription Profiling ofCandida albicansCells Undergoing the Yeast-to-Hyphal Transition. Molecular Biology of the Cell, 2002, 13, 3452-3465.	2.1	346
3	Roles of the <i>Candida albicans</i> Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis. Infection and Immunity, 1998, 66, 2713-2721.	2.2	313
4	Superoxide Dismutases inCandida albicans: Transcriptional Regulation and Functional Characterization of the Hyphal-inducedSOD5Gene. Molecular Biology of the Cell, 2004, 15, 456-467.	2.1	229
5	Transcriptional Regulation of Carbohydrate Metabolism in the Human Pathogen Candida albicans. PLoS Pathogens, 2009, 5, e1000612.	4.7	223
6	Interaction of a G-protein \hat{l}^2 -subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature, 1998, 391, 191-195.	27.8	209
7	Global Gene Deletion Analysis Exploring Yeast Filamentous Growth. Science, 2012, 337, 1353-1356.	12.6	186
8	Candida morphogenesis and host–pathogen interactions. Current Opinion in Microbiology, 2004, 7, 350-357.	5.1	174
9	Drag&Drop cloning in yeast. Gene, 2005, 344, 43-51.	2.2	165
10	Transcriptional Rewiring of Fungal Galactose-Metabolism Circuitry. Current Biology, 2007, 17, 1007-1013.	3.9	162
11	Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biology, 2007, 8, R52.	9.6	151
12	Transcription Profiling of Cyclic AMP Signaling inCandida albicans. Molecular Biology of the Cell, 2004, 15, 4490-4499.	2.1	145
13	Evolutionary Tinkering with Conserved Components of a Transcriptional Regulatory Network. PLoS Biology, 2010, 8, e1000329.	5.6	133
14	Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human PathogenCandida albicans. Molecular Biology of the Cell, 1997, 8, 2539-2551.	2.1	105
15	RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans. Cell Communication and Signaling, 2020, 18, 1.	6.5	103
16	Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation. Molecular Cell, 2008, 29, 552-562.	9.7	100
17	A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics, 2008, 9, 578.	2.8	89
18	Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Molecular Microbiology, 2005, 57, 942-959.	2.5	87

MALCOLM WHITEWAY

#	Article	IF	CITATIONS
19	Genome-wide Mapping of the Coactivator Ada2p Yields Insight into the Functional Roles of SAGA/ADA Complex in <i>Candida albicans</i> . Molecular Biology of the Cell, 2009, 20, 2389-2400.	2.1	86
20	Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes and Development, 2006, 20, 734-746.	5.9	85
21	Cyclin Cln3p Links G 1 Progression to Hyphal and Pseudohyphal Development in Candida albicans. Eukaryotic Cell, 2005, 4, 95-102.	3.4	78
22	Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by High Temperature or Hsp90 Compromise. Current Biology, 2012, 22, 461-470.	3.9	77
23	Depletion of a Polo-like Kinase inCandida albicansActivates Cyclase-dependent Hyphal-like Growth. Molecular Biology of the Cell, 2003, 14, 2163-2180.	2.1	76
24	Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Current Opinion in Microbiology, 2009, 12, 655-663.	5.1	75
25	Transcriptional Analysis of the <i>Candida albicans</i> Cell Cycle. Molecular Biology of the Cell, 2009, 20, 3363-3373.	2.1	74
26	Chemogenomic profiling predicts antifungal synergies. Molecular Systems Biology, 2009, 5, 338.	7.2	71
27	Role of Transcription Factor CaNdt80p in Cell Separation, Hyphal Growth, and Virulence in Candida albicans. Eukaryotic Cell, 2010, 9, 634-644.	3.4	69
28	Widespread occurrence of chromosomal aneuploidy following the routine production of <i>Candida albicans</i> mutants. FEMS Yeast Research, 2009, 9, 1070-1077.	2.3	54
29	Forward genetics in <i>Candida albicans</i> that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Molecular Microbiology, 2010, 75, 1182-1198.	2.5	52
30	Expression and pharmacological characterization of the human M1 muscarinic receptor inSaccharomyces cerevisiae. FEBS Letters, 1990, 266, 21-25.	2.8	51
31	Reverse Genetics in Candida albicans Predicts ARF Cycling Is Essential for Drug Resistance and Virulence. PLoS Pathogens, 2010, 6, e1000753.	4.7	51
32	The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of <i>Candida albicans</i> adhesion. Molecular Microbiology, 2011, 79, 940-953.	2.5	48
33	Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29. Antimicrobial Agents and Chemotherapy, 2016, 60, 7468-7480.	3.2	48
34	Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space. PLoS Genetics, 2018, 14, e1007270.	3.5	42
35	Evolutionary Reshaping of Fungal Mating Pathway Scaffold Proteins. MBio, 2011, 2, e00230-10.	4.1	41
36	Identification and Characterization of MFA1, the Gene Encoding Candida albicansa-Factor Pheromone. Eukaryotic Cell, 2007, 6, 487-494.	3.4	38

MALCOLM WHITEWAY

#	Article	IF	CITATIONS
37	Barrier Activity in Candida albicans Mediates Pheromone Degradation and Promotes Mating. Eukaryotic Cell, 2007, 6, 907-918.	3.4	37
38	Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiology Letters, 1998, 166, 135-139.	1.8	36
39	The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. European Journal of Cell Biology, 2016, 95, 164-174.	3.6	34
40	SST2 , a Regulator of C-Protein Signaling for the Candida albicans Mating Response Pathway. Eukaryotic Cell, 2006, 5, 192-202.	3.4	33
41	Recent advances on Candida albicans biology and virulence. F1000Research, 2016, 5, 2582.	1.6	28
42	<i>Candida albicans</i> targets that potentially synergize with fluconazole. Critical Reviews in Microbiology, 2021, 47, 323-337.	6.1	28
43	A novel type 2C protein phosphatase from the human fungal pathogen Candida albicans. FEBS Letters, 2001, 509, 142-144.	2.8	27
44	A Functional Portrait of Med7 and the Mediator Complex in Candida albicans. PLoS Genetics, 2014, 10, e1004770.	3.5	27
45	Heterotrimeric G-Protein Subunit Function in <i>Candida albicans</i> : both the α and β Subunits of the Pheromone Response G Protein Are Required for Mating. Eukaryotic Cell, 2008, 7, 1591-1599.	3.4	26
46	Reduced pathogenicity of a <i>Candida albicans</i> MAP kinase phosphatase (CPP1) mutant in the murine mastitis model. Apmis, 1998, 106, 1049-1055.	2.0	24
47	Metabolic regulation in model ascomycetes – adjusting similar genomes to different lifestyles. Trends in Genetics, 2015, 31, 445-453.	6.7	24
48	The Evolutionary Rewiring of the Ribosomal Protein Transcription Pathway Modifies the Interaction of Transcription Factor Heteromer Ifh1-Fhl1 (Interacts with Forkhead 1-Forkhead-like 1) with the DNA-binding Specificity Element. Journal of Biological Chemistry, 2013, 288, 17508-17519.	3.4	20
49	Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae. Current Biology, 2016, 26, 1677-1687.	3.9	20
50	Microarrays for Studying Pathogenicity inCandida Albicans. , 0, , 181-209.		18
51	Put3 Positively Regulates Proline Utilization in Candida albicans. MSphere, 2017, 2, .	2.9	17
52	The Genomic Landscape of the Fungus-Specific SWI/SNF Complex Subunit, Snf6, in Candida albicans. MSphere, 2017, 2, .	2.9	17
53	Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genetics, 2019, 15, e1007901.	3.5	17
54	Comparative Xylose Metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae. PLoS ONE, 2013, 8, e80733.	2.5	16

#	Article	IF	CITATIONS
55	Epigenetic control of pheromone MAPK signaling determines sexual fecundity in <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13780-13785.	7.1	16
56	Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	16
57	The adaptor protein Ste50 directly modulates yeast MAPK signaling specificity through differential connections of its RA domain. Molecular Biology of the Cell, 2019, 30, 794-807.	2.1	15
58	Deletion of a Yci1 Domain Protein of Candida albicans Allows Homothallic Mating in <i>MTL</i> Heterozygous Cells. MBio, 2016, 7, e00465-16.	4.1	14
59	Evolutionary Transition of GAL Regulatory Circuit from Generalist to Specialist Function in Ascomycetes. Trends in Microbiology, 2018, 26, 692-702.	7.7	14
60	Mms21: A Putative SUMO E3 Ligase in <i>Candida albicans</i> That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response. Genetics, 2019, 211, 579-595.	2.9	14
61	Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols. Nature Communications, 2022, 13, .	12.8	13
62	Negative regulation of filamentous growth in <i>CandidaÂalbicans</i> by Dig1p. Molecular Microbiology, 2017, 105, 810-824.	2.5	10
63	The tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis and intracellular pH homeostasis are involved in the sensitivity of Candida albicans cells to high levels of extracellular calcium. Genomics, 2019, 111, 1226-1230.	2.9	9
64	Nucleotide Excision Repair Protein Rad23 Regulates Cell Virulence Independent of Rad4 in Candida albicans. MSphere, 2020, 5, .	2.9	9
65	Hof1 plays a checkpoint-related role in MMS-induced DNA damage response in <i>Candida albicans</i> . Molecular Biology of the Cell, 2020, 31, 348-359.	2.1	8
66	Modulation of the complex regulatory network for methionine biosynthesis in fungi. Genetics, 2021, 217, .	2.9	8
67	Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunology and Medical Microbiology, 2002, 34, 153-157.	2.7	8
68	SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 2022, 12, 764711.	3.9	7
69	The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
70	Loss of RPS41 but not its paralog RPS42 results in altered growth, filamentation and transcriptome changes in Candida albicans. Fungal Genetics and Biology, 2015, 80, 31-42.	2.1	6
71	Screening of Candida albicans CRACE library revealed a unique pattern of biofilm formation under repression of the essential gene ILS1. Scientific Reports, 2019, 9, 9187.	3.3	6
72	SRYTH: A New Yeast Two-Hybrid Method. Methods in Molecular Biology, 2016, 1356, 31-41.	0.9	6

MALCOLM WHITEWAY

#	Article	IF	CITATIONS
73	Structurally unique interaction of RBD-like and PH domains is crucial for yeast pheromone signaling. Molecular Biology of the Cell, 2013, 24, 409-420.	2.1	5
74	The zinc cluster transcription factor Rha1 is a positive filamentation regulator in <i>Candida albicans</i> . Genetics, 2022, 220, .	2.9	5
75	Yeast Mating: Putting Some Fizz into Fungal Sex?. Current Biology, 2009, 19, R258-R260.	3.9	4
76	The Role of Mms22p in DNA Damage Response in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2567-2578.	1.8	4
77	MAP Kinase Regulation of the Candida albicans Pheromone Pathway. MSphere, 2019, 4, .	2.9	4
78	Molecular cloning of theCRM1 gene fromCandida albicans. Yeast, 2000, 16, 531-538.	1.7	3
79	Yeast Mating: Trying Out New Pickup Lines. Current Biology, 2011, 21, R626-R628.	3.9	3
80	Loss of Arp1, a putative actin-related protein, triggers filamentous and invasive growth and impairs pathogenicity in Candida albicans. Computational and Structural Biotechnology Journal, 2020, 18, 4002-4015.	4.1	3
81	Genetic Screening of Candida albicans Inactivation Mutants Identifies New Genes Involved in Macrophage-Fungal Cell Interactions. Frontiers in Microbiology, 2022, 13, 833655.	3.5	3
82	Ste18p Is a Positive Control Element in the Mating Process of Candida albicans. Eukaryotic Cell, 2014, 13, 461-469.	3.4	2
83	Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiology Letters, 1998, 166, 135-139.	1.8	2
84	Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts. , 0, , 143-162.		2
85	Signal-mediated localization of <i>Candida albicans</i> pheromone response pathway components. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
86	Transcriptional Profiling of the Candida albicans Response to the DNA Damage Agent Methyl Methanesulfonate. International Journal of Molecular Sciences, 2022, 23, 7555.	4.1	2
87	Fungal Genetics. , 2005, , 35-63.		0
88	Role of SAGA complex subunits in gene regulation of Candida albicans. Access Microbiology, 2021, 3, .	0.5	0