
David M Malaspina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7751170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe. Astrophysical Journal, 2022, 925, 27.	4.5	8
2	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	8.3	19
3	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	4.5	16
4	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	8.3	28
5	Multiband Electrostatic Waves below and above the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal Letters, 2022, 926, L3.	8.3	5
6	Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe. Astrophysical Journal, 2022, 927, 95.	4.5	4
7	Cross-scale energy cascade powered by magnetospheric convection. Scientific Reports, 2022, 12, 4446.	3.3	6
8	First Results From the SCM Searchâ€Coil Magnetometer on Parker Solar Probe. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	9
9	Micro cale Plasma Instabilities in the Interaction Region of the Solar Wind and the Martian Upper Atmosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
10	From the Electromagnetic Power of Lightning on Earth to Lightning-Generated Whistlers in Space. , 2022, , .		0
11	Impact ionization dust detection with compact, hollow and fluffy dust analogs. Planetary and Space Science, 2022, 220, 105536.	1.7	4
12	Scattering by whistler-mode waves during a quiet period perturbed by substorm activity. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 215, 105471.	1.6	10
13	Equatorial Pitch Angle Distributions of 1–50ÂkeV Electrons in Earth's Inner Magnetosphere: An Empirical Model Based on the Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	7
14	Highâ€Đensity Magnetospheric He ⁺ at the Dayside Magnetopause and Its Effect on Magnetic Reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	3
15	Electrostatic Waves with Rapid Frequency Shifts in the Solar Wind from PSP observations. , 2021, , .		0
16	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	4.0	16
17	The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements. Astrophysical Journal, 2021, 910, 7.	4.5	4
18	Evidence of Subprotonâ€Scale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	4.0	18

#	Article	IF	CITATIONS
19	Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves. Astrophysical Journal Letters, 2021, 911, L29.	8.3	24
20	Laboratory Study of Antenna Signals Generated by Dust Impacts on Spacecraft. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028965.	2.4	7
21	Nonâ€Detection of Lightning During the Second Parker Solar Probe Venus Gravity Assist. Geophysical Research Letters, 2021, 48, e2020GL091751.	4.0	4
22	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	8.3	49
23	Wave-particle energy transfer directly observed in an ion cyclotron wave. Astronomy and Astrophysics, 2021, 650, A10.	5.1	12
24	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A11.	5.1	8
25	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	5.1	12
26	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	5.1	12
27	Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	5.1	29
28	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	5.1	32
29	Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A9.	5.1	22
30	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU. Astronomy and Astrophysics, 2021, 650, A8.	5.1	20
31	Electromagnetic power of lightning superbolts from Earth to space. Nature Communications, 2021, 12, 3553.	12.8	9
32	Switchbacks: statistical properties and deviations from Alfvénicity. Astronomy and Astrophysics, 2021, 650, A3.	5.1	37
33	A living catalog of stream interaction regions in the Parker Solar Probe era. Astronomy and Astrophysics, 2021, 650, A25.	5.1	17
34	Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astronomy and Astrophysics, 2021, 650, A12.	5.1	35
35	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
36	Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU. Astronomy and Astrophysics, 2021, 650, A18.	5.1	26

#	Article	IF	CITATIONS
37	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	5.1	11
38	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	5.1	12
39	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	5.1	27
40	Prompt Response of the Dayside Magnetosphere to Discrete Structures Within the Sheath Region of a Coronal Mass Ejection. Geophysical Research Letters, 2021, 48, e2021GL092700.	4.0	7
41	Multipoint Density Measurements of Geocoronal Pickup Ions. Geophysical Research Letters, 2021, 48, e2021GL093695.	4.0	2
42	Realistic Electron Diffusion Rates and Lifetimes Due to Scattering by Electron Holes. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029380.	2.4	9
43	Propagation and Dispersion of Lightning-Generated Whistlers Measured From the Van Allen Probes. Frontiers in Physics, 2021, 9, .	2.1	2
44	Novel Wave Models and Diffusion Coefficients for Plasmaspheric Hiss and Low Frequency Hiss. , 2021, , .		0
45	Collisional Evolution of the Inner Zodiacal Cloud. Planetary Science Journal, 2021, 2, 185.	3.6	18
46	A Novel Machine Learning Technique to Identify and Categorize Plasma Waves in Spacecraft Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029567.	2.4	6
47	Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe. Planetary Science Journal, 2021, 2, 186.	3.6	14
48	Electrostatic Model for Antenna Signal Generation From Dust Impacts. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029645.	2.4	5
49	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	4.5	50
50	Kinetic‣cale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	4.0	11
51	The Occurrence and Prevalence of Time Domain Structures in the Kelvin-Helmholtz Instability at Different Positions Along the Earth's Magnetospheric Flanks. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	2
52	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	8.3	25
53	Experimental Determination of Ion Acoustic Wave Dispersion Relation With Interferometric Analysis. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029221.	2.4	3
54	Testing the Organization of Lowerâ€Band Whistlerâ€Mode Chorus Wave Properties by Plasmapause Location. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028458.	2.4	5

#	Article	IF	CITATIONS
55	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	4.5	14
56	Mapping MMS Observations of Solitary Waves in Earth's Magnetic Field. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029389.	2.4	1
57	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
58	A Wave Model and Diffusion Coefficients for Plasmaspheric Hiss Parameterized by Plasmapause Location. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027415.	2.4	20
59	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	4.0	16
60	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	7.7	62
61	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	7.7	83
62	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
63	In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere. Astrophysical Journal, 2020, 892, 115.	4.5	22
64	A Merged Searchâ€Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027813.	2.4	31
65	Analysis of Electric and Magnetic Lightningâ€Generated Wave Amplitudes Measured by the Van Allen Probes. Geophysical Research Letters, 2020, 47, e2020GL087503.	4.0	11
66	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	7.7	17
67	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	7.7	56
68	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	8.3	46
69	Raytracing Study of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027154.	2.4	2
70	Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument. Astrophysical Journal, Supplement Series, 2020, 246, 51.	7.7	26
71	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	7.7	25
72	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	7.8	29

#	Article	IF	CITATIONS
73	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
74	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
75	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	7.7	45
76	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246, 31.	7.7	37
77	First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS. Astrophysical Journal, Supplement Series, 2020, 246, 44.	7.7	106
78	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	7.7	26
79	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50
80	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	7.7	166
81	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	7.7	51
82	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	7.7	29
83	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	7.7	43
84	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	7.7	67
85	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	7.7	61
86	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	7.7	66
87	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	7.7	56
88	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	7.7	35
89	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	7.7	30
90	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	7.7	99

#	Article	IF	CITATIONS
91	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	7.7	57
92	The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 27.	7.7	47
93	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	7.7	23
94	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	7.7	86
95	Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 33.	7.7	21
96	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	7.7	65
97	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	7.7	152
98	Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. Astrophysical Journal, Supplement Series, 2020, 246, 40.	7.7	14
99	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	4.5	34
100	The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement. Geophysical Research Letters, 2020, 47, e2020GL086991.	4.0	3
101	Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements. Astrophysical Journal, 2020, 893, 93.	4.5	44
102	How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm. Journal of Physics: Conference Series, 2020, 1623, 012005.	0.4	8
103	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	4.5	22
104	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	7.7	100
105	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	7.7	115
106	Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations. Astrophysical Journal, Supplement Series, 2020, 246, 50.	7.7	10
107	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	7.7	10
108	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	7.7	46

#	Article	IF	CITATIONS
109	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	7.7	55
110	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	7.7	36
111	Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 153-191.	1.6	25
112	Morphological Characteristics of Strong Thermal Emission Velocity Enhancement Emissions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028110.	2.4	3
113	Properties of Electron Phase Space Holes in the Lunar Plasma Environment. Journal of Geophysical Research: Space Physics, 2019, 124, 4994-5008.	2.4	9
114	Interstellar Dust in the Solar System. Space Science Reviews, 2019, 215, 1.	8.1	20
115	In Situ Electron Density From Active Sounding: The Influence of the Spacecraft Wake. Geophysical Research Letters, 2019, 46, 10250-10256.	4.0	0
116	Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes. Journal of Geophysical Research: Space Physics, 2019, 124, 6541-6552.	2.4	11
117	Interplanetary Dust, Meteoroids, Meteors and Meteorites. Space Science Reviews, 2019, 215, 1.	8.1	49
118	Solar Rotation Period Driven Modulations of Plasmaspheric Density and Convective Electric Field in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1726-1737.	2.4	6
119	Kinetic Equilibrium and Stability Analysis of Dipolarization Fronts. Journal of Geophysical Research: Space Physics, 2019, 124, 2010-2028.	2.4	11
120	Investigation of Coatings for Langmuir Probes: Effect of Surface Oxidation on Photoemission Characteristics. Journal of Geophysical Research: Space Physics, 2019, 124, 2357-2361.	2.4	6
121	Statistical Occurrence and Distribution of Highâ€Amplitude Whistler Mode Waves in the Outer Radiation Belt. Geophysical Research Letters, 2019, 46, 2328-2336.	4.0	33
122	Hiss Waves in the Inner Magnetosphere: Density Dependence and a Diversity of Forms. , 2019, , .		0
123	Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter. Annales Geophysicae, 2019, 37, 1121-1140.	1.6	26
124	On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study. Journal of Geophysical Research: Space Physics, 2019, 124, 8590-8599.	2.4	27
125	Kinetic Properties of Mesoscale Plasma Injections. , 2019, , .		1
126	Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground. Geophysical Research Letters, 2019, 46, 12665-12674.	4.0	35

#	Article	IF	CITATIONS
127	Kinetic Physics of Dipolarization Fronts: Theory, Simulation, Laboratory Experiments and in situ Observations. , 2019, , .		0
128	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	27.8	401
129	Oneâ€Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 587-599.	2.4	19
130	Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science, 2018, 156, 85-91.	1.7	24
131	Kinetic Equilibrium of Dipolarization Fronts. Scientific Reports, 2018, 8, 17186.	3.3	12
132	Largeâ€Amplitude Highâ€Frequency Waves at Earth's Magnetopause. Journal of Geophysical Research: Space Physics, 2018, 123, 2630-2657.	2.4	30
133	Fast Diffusion of Ultrarelativistic Electrons in the Outer Radiation Belt: 17 March 2015 Storm Event. Geophysical Research Letters, 2018, 45, 10874-10882.	4.0	49
134	Enhanced Escape of Spacecraft Photoelectrons Caused by Langmuir and Upper Hybrid Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 7534-7553.	2.4	14
135	Variation in Plasmaspheric Hiss Wave Power With Plasma Density. Geophysical Research Letters, 2018, 45, 9417-9426.	4.0	39
136	Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock. Physical Review Letters, 2018, 120, 225101.	7.8	38
137	Investigation of Coatings for Langmuir Probes in an Oxygenâ€Rich Space Environment. Journal of Geophysical Research: Space Physics, 2018, 123, 6054-6064.	2.4	10
138	Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation. Journal of Geophysical Research: Space Physics, 2018, 123, 6383-6393.	2.4	27
139	A Census of Plasma Waves and Structures Associated With an Injection Front in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 2566-2587.	2.4	23
140	MMS Observations of Harmonic Electromagnetic Ion Cyclotron Waves. Geophysical Research Letters, 2018, 45, 8764-8772.	4.0	18
141	Prediction and Observation of Electron Instabilities and Phase Space Holes Concentrated in the Lunar Plasma Wake. Geophysical Research Letters, 2018, 45, 3838-3845.	4.0	12
142	The role of the convection electric field in filling the slot region between the inner and outer radiation belts. Journal of Geophysical Research: Space Physics, 2017, 122, 2051-2068.	2.4	25
143	The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission: A case study. Journal of Geophysical Research: Space Physics, 2017, 122, 5487-5501.	2.4	22
144	Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause. Geophysical Research Letters, 2017, 44, 2978-2986.	4.0	46

#	Article	IF	CITATIONS
145	Statistical properties of lowâ€frequency plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 2017, 122, 8340-8352.	2.4	55
146	Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground allâ€sky camera. Geophysical Research Letters, 2017, 44, 8130-8139.	4.0	16
147	Interpreting Dust Impact Signals Detected by the STEREO Spacecraft. Journal of Geophysical Research: Space Physics, 2017, 122, 11,864.	2.4	15
148	Parametric decay of currentâ€driven Langmuir waves in plateau plasmas: Relevance to solar wind and foreshock events. Journal of Geophysical Research: Space Physics, 2017, 122, 7005-7020.	2.4	2
149	Power distribution of magnetospheric whistler mode waves with finite electron and ion temperature. , 2017, , .		0
150	Comparisons of mapped magnetic field lines with the source path of the 7 April 1995 type III solar radio burst. Journal of Geophysical Research: Space Physics, 2016, 121, 6141-6156.	2.4	7
151	Observations of largeâ€amplitude, parallel, electrostatic waves associated with the Kelvinâ€Helmholtz instability by the magnetospheric multiscale mission. Geophysical Research Letters, 2016, 43, 8859-8866.	4.0	26
152	Magnetospheric ion influence on magnetic reconnection at the duskside magnetopause. Geophysical Research Letters, 2016, 43, 1435-1442.	4.0	42
153	Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere. Geophysical Research Letters, 2016, 43, 8827-8834.	4.0	35
154	The distribution of plasmaspheric hiss wave power with respect to plasmapause location. Geophysical Research Letters, 2016, 43, 7878-7886.	4.0	78
155	Characteristic temperatures of hypervelocity dust impact plasmas. Journal of Geophysical Research: Space Physics, 2016, 121, 8182-8187.	2.4	27
156	Observations of turbulence in a Kelvinâ€Helmholtz event on 8 September 2015 by the Magnetospheric Multiscale mission. Journal of Geophysical Research: Space Physics, 2016, 121, 11,021.	2.4	81
157	Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection. Physical Review Letters, 2016, 116, 235102.	7.8	61
158	Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection. Physical Review Letters, 2016, 117, 015001.	7.8	74
159	Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams. Journal of Geophysical Research: Space Physics, 2016, 121, 5294-5306.	2.4	32
160	The Digital Fields Board for the FIELDS instrument suite on the Solar Probe Plus mission: Analog and digital signal processing. Journal of Geophysical Research: Space Physics, 2016, 121, 5088-5096.	2.4	47
161	MMS Multipoint electric field observations of smallâ€scale magnetic holes. Geophysical Research Letters, 2016, 43, 5953-5959.	4.0	42
162	Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission. Geophysical Research Letters, 2016, 43, 5909-5917.	4.0	61

#	Article	IF	CITATIONS
163	Electric and magnetic radial diffusion coefficients using the Van Allen probes data. Journal of Geophysical Research: Space Physics, 2016, 121, 9586-9607.	2.4	66
164	Variation in relative dust impact charge recollection with antenna to spacecraft potential on STEREO. Journal of Geophysical Research: Space Physics, 2016, 121, 4998-5004.	2.4	4
165	Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 8428-8447.	2.4	17
166	A database of interplanetary and interstellar dust detected by the Wind spacecraft. Journal of Geophysical Research: Space Physics, 2016, 121, 9369-9377.	2.4	24
167	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	8.1	521
168	Magnetospheric Multiscale observations of largeâ€amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause. Geophysical Research Letters, 2016, 43, 5626-5634.	4.0	66
169	The Axial Double Probe and Fields Signal Processing for the MMS Mission. Space Science Reviews, 2016, 199, 167-188.	8.1	489
170	The Axial Double Probe and Fields Signal Processing for the MMS Mission. , 2016, 199, 167.		1
171	Laboratory investigation of antenna signals from dust impacts on spacecraft. Journal of Geophysical Research: Space Physics, 2015, 120, 5298-5305.	2.4	40
172	Hypervelocity dust impacts on the Wind spacecraft: Correlations between Ulysses and Wind interstellar dust detections. Journal of Geophysical Research: Space Physics, 2015, 120, 7121-7129.	2.4	18
173	Near‣arth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations. Geophysical Research Letters, 2015, 42, 6170-6179.	4.0	62
174	Correlated Pc4–5 ULF waves, whistlerâ€mode chorus, and pulsating aurora observed by the Van Allen Probes and groundâ€based systems. Journal of Geophysical Research: Space Physics, 2015, 120, 8749-8761.	2.4	50
175	Kinetic Alfvén waves and particle response associated with a shockâ€induced, global ULF perturbation of the terrestrial magnetosphere. Geophysical Research Letters, 2015, 42, 9203-9212.	4.0	29
176	Electric field structures and waves at plasma boundaries in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 4246-4263.	2.4	73
177	Revisiting STEREO interplanetary and interstellar dust flux and mass estimates. Journal of Geophysical Research: Space Physics, 2015, 120, 6085-6100.	2.4	27
178	Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss. Nature, 2015, 523, 193-195.	27.8	83
179	Dust observations at orbital altitudes surrounding Mars. Science, 2015, 350, aad0398.	12.6	41
180	Photoelectronâ€mediated spacecraft potential fluctuations. Journal of Geophysical Research: Space Physics, 2014, 119, 1094-1101.	2.4	6

#	Article	IF	CITATIONS
181	Applying bicoherence analysis to spacecraft observations of Langmuir waves. Geophysical Research Letters, 2014, 41, 1367-1374.	4.0	8
182	Characteristics of pitch angle distributions of hundreds of keV electrons in the slot region and inner radiation belt. Journal of Geophysical Research: Space Physics, 2014, 119, 9543-9557.	2.4	41
183	THEMIS measurements of quasiâ€static electric fields in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 9939-9951.	2.4	29
184	An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature, 2014, 515, 531-534.	27.8	159
185	Development of the nano-dust analyzer (NDA) for detection and compositional analysis of nanometer-size dust particles originating in the inner heliosphere. Review of Scientific Instruments, 2014, 85, 035113.	1.3	10
186	Nonlinear electric field structures in the inner magnetosphere. Geophysical Research Letters, 2014, 41, 5693-5701.	4.0	76
187	Micrometeoroid impact charge yield for common spacecraft materials. Journal of Geophysical Research: Space Physics, 2014, 119, 6019-6026.	2.4	57
188	Quantified energy dissipation rates in the terrestrial bow shock: 2. Waves and dissipation. Journal of Geophysical Research: Space Physics, 2014, 119, 6475-6495.	2.4	74
189	Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology. Journal of Geophysical Research: Space Physics, 2014, 119, 6455-6474.	2.4	47
190	The effects of magnetic fields on photoelectron-mediated spacecraft potential fluctuations. Journal of Geophysical Research: Space Physics, 2014, 119, 7319-7326.	2.4	2
191	Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape. Geophysical Research Letters, 2014, 41, 236-243.	4.0	13
192	Harmonic waves and sheath rectification in type III solar radio bursts. Journal of Geophysical Research: Space Physics, 2014, 119, 723-741.	2.4	19
193	Peculiar pitch angle distribution of relativistic electrons in the inner radiation belt and slot region. Geophysical Research Letters, 2014, 41, 2250-2257.	4.0	53
194	Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophysical Research Letters, 2014, 41, 266-272.	4.0	59
195	Modeling gradual diffusion changes in radiation belt electron phase space density for the March 2013 Van Allen Probes case study. Journal of Geophysical Research: Space Physics, 2014, 119, 8396-8403.	2.4	24
196	Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations. Geophysical Research Letters, 2014, 41, 1351-1358.	4.0	127
197	Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets. Journal of Geophysical Research: Space Physics, 2013, 118, 591-599.	2.4	73
198	Langmuir wave harmonics due to driven nonlinear currents. Journal of Geophysical Research: Space Physics, 2013, 118, 6880-6888.	2.4	15

#	Article	IF	CITATIONS
199	Variation of Langmuir wave polarization with electron beam speed in type III radio bursts. , 2013, , .		0
200	EVIDENCE AGAINST THE OSCILLATING TWO-STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN SOLAR TYPE III RADIO BURSTS. Astrophysical Journal Letters, 2012, 753, L18.	8.3	44
201	Do Langmuir wave packets in the solar wind collapse?. Journal of Geophysical Research, 2012, 117, .	3.3	19
202	Two spacecraft observations of magnetic discontinuities in the solar wind with STEREO. Journal of Geophysical Research, 2012, 117, .	3.3	15
203	ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES. Astrophysical Journal, 2012, 755, 45.	4.5	25
204	Size and amplitude of Langmuir waves in the solar wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	9
205	Dependence of Langmuir wave polarization on electron beam speed in type III solar radio bursts. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	35
206	Radiation in the Solar System Through Converted Electrostatic Waves. , 2011, , 235-245.		1
207	MEASUREMENTS OF RAPID DENSITY FLUCTUATIONS IN THE SOLAR WIND. Astrophysical Journal, 2010, 711, 322-327.	4.5	15
208	Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B. Solar Physics, 2010, 266, 369-377.	2.5	5
209	Spacecraft charging and ion wake formation in the near-Sun environment. Physics of Plasmas, 2010, 17, 072903.	1.9	59
210	The 2 <i>f</i> _{<i>p</i>} radiation from localized Langmuir waves. Journal of Geophysical Research, 2010, 115, .	3.3	46
211	Growth of the Langmuir cavity eigenmodes in the solar wind. Journal of Geophysical Research, 2010, 115, .	3.3	11
212	Plasma Emission at Shocks by the Eigenmode-Antenna Mechanism. , 2009, , .		0
213	Terrestrial foreshock Langmuir waves: STEREO observations, theoretical modeling, and quasiâ€linear simulations. Journal of Geophysical Research, 2009, 114, .	3.3	9
214	Observations of threeâ€dimensional Langmuir wave structure. Journal of Geophysical Research, 2008, 113, .	3.3	31
215	Eigenmode Structure in Solar-Wind Langmuir Waves. Physical Review Letters, 2008, 101, 051101.	7.8	84
216	Plasma Imaging, LOcal Measurement, and Tomographic Experiment (PILOT): A Mission Concept for Transformational Multi-Scale Observations of Mass and Energy Flow Dynamics in Earth's Magnetosphere. Frontiers in Astronomy and Space Sciences, 0, 9, .	2.8	4