List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750763/publications.pdf Version: 2024-02-01

		4658	11607
437	27,842	85	135
papers	citations	h-index	g-index
537	537	537	12462
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. Journal of Geophysical Research, 2003, 108, .	3.3	725
2	Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology, 1993, 27, 2227-2235.	10.0	626
3	Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science & Technology, 1987, 21, 105-110.	10.0	588
4	Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations. Atmospheric Environment, 1996, 30, 1709-1722.	4.1	482
5	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 2006, 6, 2017-2038.	4.9	447
6	Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 2010, 292, 201-211.	4.4	416
7	Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research, 1999, 104, 3501-3509.	3.3	410
8	SugarsDominant Water-Soluble Organic Compounds in Soils and Characterization as Tracers in Atmospheric Particulate Matter. Environmental Science & Technology, 2004, 38, 5939-5949.	10.0	348
9	Implications of ï‰-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature, 1987, 325, 330-332.	27.8	347
10	Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils. Environmental Science & Technology, 1985, 19, 1082-1086.	10.0	332
11	Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene. Geophysical Research Letters, 2003, 30, 1-1-1-4.	4.0	329
12	Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment, 2005, 39, 1945-1960.	4.1	325
13	Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmospheric Environment, 1994, 28, 449-459.	4.1	314
14	Molecular, Seasonal, and Spatial Distributions of Organic Aerosols from Fourteen Chinese Cities. Environmental Science & Technology, 2006, 40, 4619-4625.	10.0	306
15	A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research, 2016, 170, 140-160.	4.1	282
16	Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters, 1999, 26, 3101-3104.	4.0	244
17	Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. Journal of Geophysical Research, 1996, 101, 18721-18728.	3.3	235
18	In-cloud oxalate formation in the global troposphere: a 3-D modeling study. Atmospheric Chemistry and Physics, 2011, 11, 5761-5782.	4.9	218

#	Article	IF	CITATIONS
19	Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric Chemistry and Physics, 2015, 15, 1573-1584.	4.9	213
20	Ubiquity of bisphenol A in the atmosphere. Environmental Pollution, 2010, 158, 3138-3143.	7.5	210
21	Four years' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochemical Cycles, 2003, 17, 3-1-3-19.	4.9	201
22	Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmospheric Chemistry and Physics, 2010, 10, 2663-2689.	4.9	200
23	Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. Journal of Geophysical Research, 2008, 113, .	3.3	199
24	Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics, 2010, 10, 2209-2225.	4.9	195
25	Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. Journal of Geophysical Research, 2004, 109, .	3.3	182
26	Time-resolved measurements of water-soluble organic carbon in Tokyo. Journal of Geophysical Research, 2006, 111, .	3.3	182
27	Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Scientific Reports, 2015, 5, 9580.	3.3	180
28	Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles. Journal of Geophysical Research, 2002, 107, AAC 1-1-AAC 1-10.	3.3	178
29	Identification of C2-C10 .omegaoxocarboxylic acids, pyruvic acid, and C2-C3 .alphadicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS. Analytical Chemistry, 1993, 65, 3505-3511.	6.5	176
30	Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmospheric Chemistry and Physics, 2011, 11, 3037-3049.	4.9	171
31	Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation. Biogeosciences, 2013, 10, 653-667.	3.3	169
32	Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during longâ€range atmospheric transport. Journal of Geophysical Research, 2008, 113, .	3.3	163
33	Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmospheric Environment, 2012, 55, 234-239.	4.1	161
34	High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. Atmospheric Chemistry and Physics, 2013, 13, 8285-8302.	4.9	157
35	Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmospheric Chemistry and Physics, 2010, 10, 5839-5858.	4.9	154
36	Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. Journal of Oceanography, 1993, 49, 271-283.	1.7	149

#	Article	IF	CITATIONS
	Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
37	outflow of organic aerosols during the ACE-Asia campaign. Journal of Geophysical Research, 2003, 108, .	3.3	149
38	Isoprene, Monoterpene, and Sesquiterpene Oxidation Products in the High Arctic Aerosols during Late Winter to Early Summer. Environmental Science & Technology, 2009, 43, 4022-4028.	10.0	149
39	Dicarboxylic acids and waterâ€soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. Journal of Geophysical Research, 2009, 114, .	3.3	148
40	Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment, 2006, 40, 3030-3040.	4.1	146
41	Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. Journal of Geophysical Research, 2007, 112, .	3.3	144
42	Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research, 2019, 220, 20-33.	4.1	144
43	Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmospheric Chemistry and Physics, 2012, 12, 8359-8375.	4.9	141
44	Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. Journal of Geophysical Research, 2003, 108, .	3.3	140
45	Organic compounds in the rainwater of Los Angeles. Environmental Science & Technology, 1983, 17, 497-501.	10.0	139
46	Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation–Emission Matrix Spectroscopy. Environmental Science & Technology, 2016, 50, 10351-10360.	10.0	139
47	Molecular characterization of marine organic aerosols collected during a round-the-world cruise. Journal of Geophysical Research, 2011, 116, .	3.3	136
48	Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	135
49	Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmospheric Environment, 2007, 41, 407-416.	4.1	134
50	Photochemical and Other Sources of Organic Compounds in the Canadian High Arctic Aerosol Pollution during Winterâ^'Spring. Environmental Science & Technology, 2009, 43, 286-292.	10.0	134
51	Homologous series of C1–C10 monocarboxylic acids and C1–C6 carbonyls in Los Angeles air and motor vehicle exhausts. Atmospheric Environment, 2000, 34, 4175-4191.	4.1	133
52	Waterâ€soluble organic carbon, dicarboxylic acids, ketoacids, and <i>α</i> â€dicarbonyls in the tropical Indian aerosols. Journal of Geophysical Research, 2010, 115, .	3.3	130
53	Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmospheric Chemistry and Physics, 2012, 12, 4259-4277.	4.9	130
54	Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Marine Chemistry, 2013, 148, 22-32.	2.3	129

#	Article	IF	CITATIONS
55	Concentrations of monocarâ~ylic and dicarâ~ylic acids and aldehydes in southern California wet precipitations: Comparison of urban and nonurban samples and compositional changes during scavenging. Atmospheric Environment, 1996, 30, 1035-1052.	4.1	127
56	Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. Atmospheric Environment, 2005, 39, 599-614.	4.1	127
57	Capillary gas chromatography determination of volatile organic acids in rain and fog samples. Analytical Chemistry, 1984, 56, 1616-1620.	6.5	124
58	Historical Trends of Atmospheric Black Carbon on Tibetan Plateau As Reconstructed from a 150-Year Lake Sediment Record. Environmental Science & Technology, 2013, 47, 2579-2586.	10.0	123
59	Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core. Climate of the Past, 2013, 9, 2489-2505.	3.4	123
60	Size-distributions of <i>n</i> -alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmospheric Chemistry and Physics, 2009, 9, 8869-8882.	4.9	120
61	Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from Western Pacific. Atmospheric Environment, 1996, 30, 1609-1619.	4.1	119
62	Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. Journal of Aerosol Science, 2010, 41, 118-133.	3.8	119
63	Molecular Distribution and Stable Carbon Isotopic Composition of Dicarboxylic Acids, Ketocarboxylic Acids, and α-Dicarbonyls in Size-Resolved Atmospheric Particles From Xi'an City, China. Environmental Science & Technology, 2012, 46, 4783-4791.	10.0	118
64	Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. Atmospheric Environment, 2011, 45, 2473-2479.	4.1	115
65	Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment, 2009, 43, 2532-2540.	4.1	114
66	Molecular Characteristics of Urban Organic Aerosols from Nanjing:Â A Case Study of A Mega-City in China. Environmental Science & Technology, 2005, 39, 7430-7438.	10.0	113
67	Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment, 2010, 44, 3511-3518.	4.1	112
68	Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt. Tai, Central East China. Atmospheric Environment, 2010, 44, 4817-4826.	4.1	110
69	Secondary formation of waterâ€soluble organic acids and <i>α</i> â€dicarbonyls and their contributions to total carbon and waterâ€soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring. Journal of Geophysical Research, 2010, 115, .	3.3	109
70	Variations in global methane sources and sinks during 1910–2010. Atmospheric Chemistry and Physics, 2015, 15, 2595-2612.	4.9	108
71	Biogenic and anthropogenic organic compounds in rain and snow samples collected in southern california. Atmospheric Environment, 1986, 20, 115-124.	1.0	106
72	Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmospheric Environment, 2002, 36, 2491-2499.	4.1	106

#	Article	IF	CITATIONS
73	Contribution of Selected Dicarboxylic and ï‰-Oxocarboxylic Acids in Ambient Aerosol to them/z44 Signal of an Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2007, 41, 418-437.	3.1	103
74	Wet deposition of low molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species in Los Angeles. Atmospheric Environment, 2001, 35, 3917-3926.	4.1	100
75	Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography, 2004, 19, n/a-n/a.	3.0	99
76	Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 6087-6096.	4.9	98
77	Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM _{2.5} in Pearl Delta River Region, China. Atmospheric Chemistry and Physics, 2011, 11, 2197-2208.	4.9	98
78	Trans-hemispheric contribution of C2-C10α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	96
79	One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts. Atmospheric Chemistry and Physics, 2014, 14, 1819-1836.	4.9	96
80	Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric Chemistry and Physics, 2013, 13, 10325-10338.	4.9	94
81	Fluorescent water-soluble organic aerosols in the High Arctic atmosphere. Scientific Reports, 2015, 5, 9845.	3.3	94
82	Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16kyr. Organic Geochemistry, 2009, 40, 671-677.	1.8	93
83	Dicarboxylic acids, ketocarboxylic acids, <i>α</i> â€dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijingâ€2006). Journal of Geophysical Research, 2010, 115, .	3.3	93
84	Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and) Tj ETQq0 0 0 rgBT /Ov Northeast Asia. Geochimica Et Cosmochimica Acta, 2012, 99, 317-329.	verlock 10 3.9	Tf 50 307 Td 93
85	Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmospheric Chemistry and Physics, 2015, 15, 1959-1973.	4.9	93
86	Water-Soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the southern ocean and western pacific ocean. Journal of Atmospheric Chemistry, 2006, 53, 43-61.	3.2	92
87	Latitudinal distribution of terrestrial lipid biomarkers and n-alkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean. Geochimica Et Cosmochimica Acta, 2007, 71, 5934-5955.	3.9	92
88	Investigation of the tracers for plastic-enriched waste burning aerosols. Atmospheric Environment, 2015, 108, 49-58.	4.1	92
89	Bimodal size distributions of various organic acids and fatty acids in the marine atmosphere: Influence of anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia. Journal of Geophysical Research, 2007, 112, .	3.3	91
90	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics, 2017, 17, 8867-8885.	4.9	91

#	Article	IF	CITATIONS
91	Organic Molecular Compositions and Size Distributions of Chinese Summer and Autumn Aerosols from Nanjing: Characteristic Haze Event Caused by Wheat Straw Burning. Environmental Science & Technology, 2009, 43, 6493-6499.	10.0	90
92	Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors. Atmospheric Chemistry and Physics, 2009, 9, 7711-7723.	4.9	89
93	Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing. Atmospheric Chemistry and Physics, 2013, 13, 4667-4680.	4.9	88
94	Distributions of Three- to Seven-Ring Polynuclear Aromatic Hydrocarbons on the Deep Sea Floor in the Central Pacific. Environmental Science & 2007, 1999, 1999, 33, 3086-3090.	10.0	86
95	Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmospheric Chemistry and Physics, 2012, 12, 1367-1376.	4.9	86
96	Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion. Atmospheric Environment, 2005, 39, 5865-5875.	4.1	84
97	Early diagenesis of organic matter in the water column and sediments: Microbial degradation and resynthesis of lipids in Lake Haruna. Organic Geochemistry, 1987, 11, 251-264.	1.8	83
98	Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific. Geochimica Et Cosmochimica Acta, 1997, 61, 1911-1918.	3.9	83
99	A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochimica Et Cosmochimica Acta, 2001, 65, 791-802.	3.9	83
100	Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmospheric Environment, 2010, 44, 3597-3604.	4.1	80
101	Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmospheric Chemistry and Physics, 2011, 11, 8215-8230.	4.9	79
102	In situ measurement of isoprene in the marine air and surface seawater from the western North Pacific. Atmospheric Environment, 2002, 36, 6051-6057.	4.1	78
103	Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios. Geophysical Research Letters, 2010, 37, .	4.0	78
104	Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. Environmental Pollution, 2018, 243, 1579-1587.	7.5	78
105	Growth of organic aerosols by biogenic semi-volatile carbonyls in the forestal atmosphere. Atmospheric Environment, 2003, 37, 2045-2050.	4.1	77
106	Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: Implications for atmospheric processing and source changes of aerosols. Journal of Geophysical Research, 2010, 115, .	3.3	77
107	Secondary Production of Organic Aerosols from Biogenic VOCs over Mt. Fuji, Japan. Environmental Science & Technology, 2014, 48, 8491-8497.	10.0	77
108	Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmospheric Chemistry and Physics, 2012, 12, 6645-6665.	4.9	76

#	Article	IF	CITATIONS
109	Evidence for 13 arbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase. Geophysical Research Letters, 2012, 39, .	4.0	76
110	Volatile organic acids generated from kerogen during laboratory heating Geochemical Journal, 1986, 20, 51-59.	1.0	75
111	High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophysical Research Letters, 2014, 41, 3649-3657.	4.0	75
112	Production of dicarboxylic acids in the Arctic atmosphere at polar sunrise. Geophysical Research Letters, 1995, 22, 1253-1256.	4.0	74
113	Organic and inorganic compositions of marine aerosols from East Asia: Seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. Geochemical Society Special Publications, 2004, 9, 243-265.	0.1	74
114	Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and <i>α</i> â€dicarbonyls. Journal of Geophysical Research, 2010, 115, .	3.3	74
115	Depth ranges of alkenone production in the central Pacific Ocean. Global Biogeochemical Cycles, 1999, 13, 695-704.	4.9	72
116	Determination of Stable Carbon Isotopic Compositions of Low Molecular Weight Dicarboxylic Acids and Ketocarboxylic Acids in Atmospheric Aerosol and Snow Samples. Analytical Chemistry, 2004, 76, 5762-5768.	6.5	72
117	Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environmental Pollution, 2017, 231, 654-662.	7.5	72
118	High penetration of ultraviolet radiation in the south east Pacific waters. Geophysical Research Letters, 2007, 34, .	4.0	71
119	Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Science of the Total Environment, 2016, 572, 1244-1251.	8.0	71
120	Dicarboxylic acids generated by thermal alteration of kerogen and humic acids. Geochimica Et Cosmochimica Acta, 1987, 51, 3201-3207.	3.9	70
121	Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds. Journal of Geophysical Research, 2004, 109, .	3.3	70
122	Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990–1993 and 2006–2009 periods. Atmospheric Environment, 2013, 67, 448-458.	4.1	70
123	A compound-specific n-alkane l´13C and l´D approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. Geochimica Et Cosmochimica Acta, 2010, 74, 599-613.	3.9	68
124	Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM _{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. Atmospheric Chemistry and Physics, 2015, 15, 3111-3123.	4.9	67
125	Carbon Isotopic Composition of Fatty Acids in the Marine Aerosols from the Western North Pacific:Â Implication for the Source and Atmospheric Transport. Environmental Science & Technology, 2002, 36, 2598-2604.	10.0	66
126	Chemistry of OH and HO2radicals observed at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO2and positive nighttime correlations with monoterpenes. Journal of Geophysical Research, 2007, 112, .	3.3	66

#	Article	IF	CITATIONS
127	Seasonal variations of diacids, ketoacids, and <i>α</i> â€dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during longâ€range transport. Journal of Geophysical Research, 2010, 115, .	3.3	66
128	Bimodal size distribution of C2-C4dicarboxylic acids in the marine aerosols. Geophysical Research Letters, 2003, 30, .	4.0	65
129	Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal,) Tj ETQq1 1 0.784 2013, 13, 5369-5380.	314 rgBT / 4.9	Overlock 10 65
130	Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005. Atmospheric Environment, 2009, 43, 219-227.	4.1	64
131	Size distributions and chemical characterization of waterâ€soluble organic aerosols over the western North Pacific in summer. Journal of Geophysical Research, 2010, 115, .	3.3	64
132	Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. Journal of Geophysical Research, 2004, 109, .	3.3	63
133	Dependence of CCN activity of less volatile particles on the amount of coating observed in Tokyo. Journal of Geophysical Research, 2007, 112, .	3.3	62
134	Waterâ€soluble organic compounds in PM _{2.5} and sizeâ€segregated aerosols over Mount Tai in North China Plain. Journal of Geophysical Research, 2009, 114, .	3.3	61
135	Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5504-5523.	3.3	61
136	A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls: A trend from Little Ice Age to the present (1540 to 1989 A.D.). Journal of Geophysical Research, 2001, 106, 1331-1345.	3.3	60
137	Environmental influences over the last 16ka on compound-specific δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China. Chemical Geology, 2010, 277, 261-268.	3.3	60
138	Measurement of overall uptake coefficients for HO ₂ radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China). Atmospheric Chemistry and Physics, 2012, 12, 11907-11916.	4.9	60
139	Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons. Atmospheric Chemistry and Physics, 2013, 13, 2235-2251.	4.9	60
140	Water-soluble dicarboxylic acids in the tropospheric aerosols collected over east Asia and western North Pacific by ACE-Asia C-130 aircraft. Journal of Geophysical Research, 2003, 108, .	3.3	59
141	Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo. Journal of Geophysical Research, 2006, 111, .	3.3	59
142	Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. Die Naturwissenschaften, 1994, 81, 502-505.	1.6	58
143	Variation on the atmospheric concentrations of biogenic carbonyl compounds and their removal processes in the northern forest at Moshiri, Hokkaido Island in Japan. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	58
144	Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. Organic Geochemistry, 2004, 35, 347-354.	1.8	58

#	Article	IF	CITATIONS
145	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Technology, 2017, 51, 7842-7852.	10.0	58
146	Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer. Biogeosciences, 2012, 9, 4725-4737.	3.3	57
147	A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust. Atmospheric Chemistry and Physics, 2015, 15, 6437-6453.	4.9	57
148	Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmospheric Environment, 2016, 130, 64-73.	4.1	57
149	New Directions: Need for better understanding of plastic waste burning as inferred from high abundance of terephthalic acid in South Asian aerosols. Atmospheric Environment, 2010, 44, 5320-5321.	4.1	56
150	Regional hydroclimate and precipitation Î [°] 180 revealed in tree-ring cellulose Î′180 from different tree species in semi-arid Northern China. Chemical Geology, 2011, 282, 19-28.	3.3	56
151	Sulfur isotope records around Livello Bonarelli (northern Apennines, Italy) black shale at the Cenomanian-Turonian boundary. Geology, 1999, 27, 535.	4.4	55
152	Sizeâ€segregated measurements of cloud condensation nucleus activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008. Journal of Geophysical Research, 2010, 115, .	3.3	55
153	Brown carbon in the cryosphere: Current knowledge and perspective. Advances in Climate Change Research, 2016, 7, 82-89.	5.1	55
154	Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM2.5) in Beijing, China. Atmospheric Environment, 2016, 124, 166-175.	4.1	55
155	Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and <i>l±</i> -dicarbonyls in PM _{2.5} from Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 2749-2767.	4.9	55
156	Mid-chain ketocarboxylic acids in the remote marine atmosphere: Distribution patterns and possible formation mechanisms. Journal of Atmospheric Chemistry, 1990, 11, 107-122.	3.2	54
157	Small changes in the sea surface temperature during the last 20,000 years: Molecular evidence from the western tropical Pacific. Geophysical Research Letters, 1994, 21, 2207-2210.	4.0	54
158	Determination of Low Molecular Weight Dicarboxylic and Ketocarboxylic Acids in Seawater Samples. Analytical Chemistry, 2006, 78, 6012-6018.	6.5	54
159	Radiocarbon content and stable carbon isotopic ratios of individual fatty acids in subsurface soil: Implication for selective microbial degradation and modification of soil organic matter. Geochemical Journal, 2007, 41, 483-492.	1.0	54
160	Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols. Journal of Geophysical Research, 2011, 116, .	3.3	54
161	Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. Atmospheric Chemistry and Physics, 2018, 18, 13947-13967.	4.9	54
162	Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: Implications for lateral material transport and biological productivity. Journal of Geophysical Research, 2004, 109, .	3.3	53

#	Article	IF	CITATIONS
163	Seasonal cycles of waterâ€soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1440-1454.	3.3	53
164	Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere, 2016, 161, 27-42.	8.2	53
165	Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska. Atmospheric Environment, 2016, 130, 95-104.	4.1	53
166	An extremely turbid intermediate water in the Sea of Okhotsk: Implication for the transport of particulate organic matter in a seasonally ice-bound sea. Geophysical Research Letters, 2002, 29, 4-1-4-4.	4.0	52
167	Secondary Organic Aerosol Formation over Coastal Ocean: Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds. Environmental Science & Technology, 2017, 51, 4347-4357.	10.0	52
168	Fatty acid geochemistry of a 200 m sediment core from Lake Biwa, Japan. Early diagenesis and paleoenvironmental information. Geochimica Et Cosmochimica Acta, 1984, 48, 251-266.	3.9	51
169	Molecular Markers of Secondary Organic Aerosol in Mumbai, India. Environmental Science & Technology, 2016, 50, 4659-4667.	10.0	51
170	Identification of polyunsaturated fatty acids in surface lacustrine sediments. Chemical Geology, 1980, 28, 31-39.	3.3	50
171	Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. Geochimica Et Cosmochimica Acta, 1981, 45, 149-155.	3.9	50
172	Capillary GC Determination of Short-Chain Dicarboxylic Acids in Rain, Fog, and Mist. International Journal of Environmental Analytical Chemistry, 1985, 19, 175-188.	3.3	50
173	High loadings and source strengths of organic aerosols in China. Geophysical Research Letters, 2006, 33, .	4.0	50
174	Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific. Journal of Geophysical Research, 2011, 116, .	3.3	50
175	Hydroclimate variability in the North China Plain and its link with El Niñ0-Southern Oscillation since 1784 A.D.: Insights from tree-ring cellulose <i>δ</i> ¹⁸ 0. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	49
176	North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records. Quaternary Science Reviews, 2015, 129, 111-127.	3.0	49
177	Structural and Light-Absorption Characteristics of Complex Water-Insoluble Organic Mixtures in Urban Submicrometer Aerosols. Environmental Science & Technology, 2017, 51, 8293-8303.	10.0	49
178	Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014. Environmental Pollution, 2017, 220, 863-872.	7.5	49
179	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	7.5	49
180	Tightly bound β-hydroxy acids in a Recent sediment. Nature, 1982, 297, 144-145.	27.8	48

#	Article	IF	CITATIONS
181	Stable carbon isotopic ratios and ionic composition of the highâ€Arctic aerosols: An increase in <i>δ</i> ¹³ C values from winter to spring. Journal of Geophysical Research, 2008, 113, .	3.3	48
182	Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the Polar Sunrise Experiment 1997. Journal of Geophysical Research, 2003, 108, .	3.3	47
183	Stable carbon isotopic composition of low-molecular-weight dicarboxylic acids and ketoacids in remote marine aerosols. Journal of Geophysical Research, 2006, 111, .	3.3	47
184	Seasonal changes in stable carbon isotopic composition of n-alkanes in the marine aerosols from the western North Pacific: Implications for the source and atmospheric transport. Geochimica Et Cosmochimica Acta, 2006, 70, 13-26.	3.9	47
185	Aircraft Measurement of Organic Aerosols over China. Environmental Science & Technology, 2007, 41, 3115-3120.	10.0	47
186	Compositional change of organic matter in rainwater during precipitation events. Atmospheric Environment, 1986, 20, 527-535.	1.0	46
187	Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China. Geology, 2011, 39, 875-878.	4.4	46
188	Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants. Atmospheric Environment, 2016, 131, 243-253.	4.1	46
189	Alkenone sea surface temperature in the Southern Ocean for the last two deglaciations. Geophysical Research Letters, 1997, 24, 679-682.	4.0	45
190	Compound specific radiocarbon and δ13C measurements of fatty acids in a continental aerosol sample. Geophysical Research Letters, 2001, 28, 4587-4590.	4.0	45
191	Low Molecular Weight Dicarboxylic Acids, Ketoacids, and Dicarbonyls in the Fine Particles from a Roadway Tunnel:Â Possible Secondary Production from the Precursors. Environmental Science & Technology, 2006, 40, 6255-6260.	10.0	45
192	Hydroxyl radical-induced photochemical formation of dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 135-139.	3.9	45
193	Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nature Communications, 2015, 6, 7587.	12.8	45
194	Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China. Environmental Science & amp; Technology, 2016, 50, 6284-6292.	10.0	45
195	Dicarboxylic acids, oxoacids, benzoic acid, <i>α</i> -dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes. Atmospheric Chemistry and Physics, 2016, 16, 5263-5282.	4.9	45
196	Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. Environmental Pollution, 2020, 257, 113616.	7.5	45
197	Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic. Journal of Geophysical Research, 2007, 112, .	3.3	44
198	Assessment of the aerosol water content in urban atmospheric particles by the hygroscopic growth measurements in Sapporo, Japan. Atmospheric Environment, 2009, 43, 3416-3423.	4.1	44

#	Article	IF	CITATIONS
199	Diurnal variations of polar organic tracers in summer forest aerosols: A case study of a Quercus and Picea mixed forest in Hokkaido, Japan. Geochemical Journal, 2011, 45, 297-308.	1.0	44
200	Enhanced modern carbon and biogenic organic tracers in Northeast Asian aerosols during spring/summer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2362-2371.	3.3	43
201	Stable carbon and nitrogen isotopic composition of fine mode aerosols (PM _{2.5}) over the Bay of Bengal: impact of continental sources. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 31518.	1.6	42
202	Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise. Environmental Science & Technology, 2017, 51, 8992-9004.	10.0	42
203	Characterization of organic aerosols from a Chinese megacity during winter: predominance of fossil fuel combustion. Atmospheric Chemistry and Physics, 2019, 19, 5147-5164.	4.9	42
204	Why airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective. Science of the Total Environment, 2021, 773, 145525.	8.0	42
205	Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmospheric Chemistry and Physics, 2015, 15, 7999-8012.	4.9	41
206	Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa. Atmospheric Environment, 2016, 130, 113-119.	4.1	41
207	Stable carbon isotopic compositions of lowâ€molecularâ€weight dicarboxylic acids, oxocarboxylic acids, <i>α</i> â€dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3707-3717.	3.3	41
208	Long-term (2001–2012) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants. Atmospheric Chemistry and Physics, 2018, 18, 1291-1306.	4.9	41
209	Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber. Atmospheric Environment, 2018, 185, 15-28.	4.1	41
210	Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. Atmospheric Chemistry and Physics, 2019, 19, 2725-2747.	4.9	41
211	Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. Atmospheric Chemistry and Physics, 2015, 15, 9883-9896.	4.9	40
212	Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest. Atmospheric Chemistry and Physics, 2016, 16, 7497-7506.	4.9	40
213	Stable carbon isotopic compositions of light hydrocarbons over the western North Pacific and implication for their photochemical ages. Journal of Geophysical Research, 2002, 107, ACH 2-1.	3.3	39
214	Time-series sediment trap record of alkenones from the western Sea of Okhotsk. Marine Chemistry, 2007, 104, 253-265.	2.3	39
215	Airborne myxomycete spores: detection using molecular techniques. Die Naturwissenschaften, 2009, 96, 147-151.	1.6	39
216	Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution. Atmospheric Chemistry and Physics, 2013, 13, 8265-8283.	4.9	39

#	Article	IF	CITATIONS
217	Tightly bound aliphatic acids in Lake Biwa sediments: Their origin and stability. Organic Geochemistry, 1984, 7, 121-126.	1.8	38
218	Seasonal variations of stable carbon isotopic composition of bulk aerosol carbon from Gosan site, Jeju Island in the East China Sea. Atmospheric Environment, 2014, 94, 316-322.	4.1	38
219	Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr Geochemical Journal, 2000, 34, 283-293.	1.0	37
220	Variations of terrestrial input and marine productivity in the Southern Ocean (48°S) during the last two deglaciations. Paleoceanography, 2000, 15, 170-180.	3.0	37
221	Wintertime Organic Aerosols in Christchurch and Auckland, New Zealand:Â Contributions of Residential Wood and Coal Burning and Petroleum Utilization. Environmental Science & Technology, 2006, 40, 5257-5262.	10.0	37
222	On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr. Climate of the Past, 2013, 9, 583-596.	3.4	37
223	Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific. Atmospheric Chemistry and Physics, 2018, 18, 81-101.	4.9	37
224	Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer. Environmental Science & Technology, 2021, 55, 5525-5536.	10.0	37
225	Long-chain carboxylic acids in pyrolysates of Green River kerogen. Organic Geochemistry, 1986, 10, 1059-1065.	1.8	36
226	Distributions of C2–C6 hydrocarbons over the western North Pacific and eastern Indian Ocean. Atmospheric Environment, 2000, 34, 4373-4381.	4.1	36
227	Selected water-soluble organic compounds found in size-resolved aerosols collected from urban, mountain and marine atmospheres over East Asia. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 371.	1.6	36
228	Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China. Atmospheric Chemistry and Physics, 2020, 20, 117-137.	4.9	36
229	Compound-Specific Radiocarbon Ages of Fatty Acids in Marine Sediments from the Western North Pacific. Radiocarbon, 2001, 43, 949-956.	1.8	35
230	Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography. Atmospheric Environment, 2010, 44, 5316-5319.	4.1	35
231	Evidence of formation of submicrometer waterâ€soluble organic aerosols at a deciduous forest site in northern Japan in summer. Journal of Geophysical Research, 2012, 117, .	3.3	35
232	Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and <i>î±</i> â€dicarbonyls over the western North Pacific: Sources and formation pathways. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5010-5035.	3.3	35
233	Age discrepancy between molecular biomarkers and calcareous foraminifera isolated from the same horizons of Northwest Pacific sediments. Chemical Geology, 2005, 218, 73-89.	3.3	34
234	Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 253-270.	1.4	34

#	Article	IF	CITATIONS
235	High abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution. Environmental Science and Pollution Research, 2015, 22, 12902-12918.	5.3	34
236	Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition. Environmental Science and Pollution Research, 2016, 23, 6102-6118.	5.3	34
237	Fluctuations of terrestrial and marine biomarkers in the western tropical Pacific during the last 23,300 years. Paleoceanography, 1997, 12, 623-630.	3.0	33
238	Chemical Closure Study on Hygroscopic Properties of Urban Aerosol Particles in Sapporo, Japan. Environmental Science & Technology, 2007, 41, 6920-6925.	10.0	32
239	Low-molecular-weight hydroxyacids in marine atmospheric aerosol: evidence of a marine microbial origin. Biogeosciences, 2014, 11, 4407-4414.	3.3	32
240	Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM ₁₀) over central China. Atmospheric Chemistry and Physics, 2014, 14, 4185-4199.	4.9	32
241	Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a <l>Larix kaempferi</l> forest. Atmospheric Chemistry and Physics, 2015, 15, 12029-12041.	4.9	32
242	Molecular distributions and isotopic compositions of organic aerosols over the western North Atlantic: Dicarboxylic acids, related compounds, sugars, and secondary organic aerosol tracers. Organic Geochemistry, 2017, 113, 229-238.	1.8	32
243	Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes. Atmospheric Research, 2018, 202, 128-139.	4.1	32
244	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environmental Pollution, 2019, 247, 216-228.	7.5	32
245	Long-term (2001–2013) observations of water-soluble dicarboxylic acids and related compounds over the western North Pacific: trends, seasonality and source apportionment. Scientific Reports, 2017, 7, 8518.	3.3	31
246	Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station. Atmospheric Chemistry and Physics, 2019, 19, 3463-3479.	4.9	31
247	Distribution of lipid-class compounds in bottom sediments of freshwater lakes with different trophic status, in Japan. Chemical Geology, 1985, 51, 123-133.	3.3	30
248	Molecular paleoclimatology: reconstruction of climate variabilities in the late Quaternary. Organic Geochemistry, 1997, 27, 173-183.	1.8	30
249	Determination of α- and β-Hydroxycarbonyls and Dicarbonyls in Snow and Rain Samples by GC/FID and GC/MS Employing Benzyl Hydroxyl Oxime Derivatization. Analytical Chemistry, 2000, 72, 4742-4746.	6.5	30
250	High abundance of gaseous and particulate 4-oxopentanal in the forestal atmosphere. Chemosphere, 2004, 55, 1143-1147.	8.2	30
251	Paleoenvironmental significance of compound-specific $\hat{1}$ 13C variations in n-alkanes in the Hongyuan peat sequence from southwest China over the last 13ka. Organic Geochemistry, 2010, 41, 491-497.	1.8	30
252	Hygroscopic properties of particles nebulized from water extracts of aerosols collected at Chichijima Island in the western North Pacific: An outflow region of Asian dust. Journal of Geophysical Research D: Atmospheres, 2014, 119, 167-178.	3.3	30

#	Article	IF	CITATIONS
253	Enrichment of 13C in diacids and related compounds during photochemical processing of aqueous aerosols: New proxy for organic aerosols aging. Scientific Reports, 2016, 6, 36467.	3.3	30
254	Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in atmospheric aerosols from Mt. Fuji, Japan: Implication for primary emission versus secondary formation. Atmospheric Research, 2019, 221, 58-71.	4.1	30
255	Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain. Environmental Pollution, 2020, 256, 113401.	7.5	30
256	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	3.3	30
257	Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. Atmospheric Chemistry and Physics, 2011, 11, 10911-10928.	4.9	29
258	Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: Evidence from fresh snow from Sapporo, northern Japan. Atmospheric Environment, 2011, 45, 3553-3560.	4.1	29
259	Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: sources and contribution from burning of C ₃ and C ₄ plants to organic aerosols. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 20176.	1.6	29
260	The Determination of α-Keto Acids and Oxalic Acid in Rain, Fog and Mist by HPLC. International Journal of Environmental Analytical Chemistry, 1985, 19, 251-260.	3.3	28
261	Hygroscopic property of water-soluble organic-enriched aerosols in Ulaanbaatar, Mongolia during the cold winter of 2007. Atmospheric Environment, 2011, 45, 2722-2729.	4.1	28
262	Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest. Scientific Reports, 2017, 7, 8452.	3.3	28
263	Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji. Atmospheric Environment, 2017, 166, 255-262.	4.1	28
264	Conversion of sedimentary fatty acids from extractable (unbound + bound) to tightly bound form during mild heating. Organic Geochemistry, 1985, 8, 197-201.	1.8	27
265	Low molecular weight (C1–C10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan. Atmospheric Environment, 2012, 62, 272-280.	4.1	27
266	Different characteristics of new particle formation between urban and deciduous forest sites in Northern Japan during the summers of 2010–2011. Atmospheric Chemistry and Physics, 2013, 13, 51-68.	4.9	27
267	Seasonal distributions and sources of low molecular weight dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in ambient aerosols from subtropical Okinawa in the western Pacific Rim. Environmental Chemistry, 2014, 11, 673.	1.5	27
268	Molecular distributions of dicarboxylic acids, oxocarboxylic acids and <i>l±</i> -dicarbonyls in PM _{2.5} collected at the top of Mt. Tai, North China, during the wheat burning season of 2014. Atmospheric Chemistry and Physics, 2018, 18, 10741-10758.	4.9	27
269	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq1 1 12247-12256.	0.784314 rg 10.0	gBT /Overloch 27
270	Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 6803-6820.	4.9	27

#	Article	IF	CITATIONS
271	Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing: Implication for photochemical aging during atmospheric transport. Science of the Total Environment, 2014, 499, 154-165.	8.0	26
272	Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest. Environmental Research Letters, 2015, 10, 034015.	5.2	26
273	Sources and formation processes of waterâ€soluble dicarboxylic acids, ωâ€oxocarboxylic acids, αâ€dicarbonyls, and major ions in summer aerosols from eastern central India. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3630-3652.	3.3	26
274	Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic compounds at the Tomakomai larch forest station in Japan. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 177-186.	1.6	25
275	Hygroscopic behavior of waterâ€soluble matter extracted from biomass burning aerosols collected at a rural site in Tanzania, East Africa. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,233.	3.3	25
276	Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan. Atmospheric Chemistry and Physics, 2016, 16, 14621-14633.	4.9	25
277	Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. Atmospheric Environment, 2019, 213, 608-619.	4.1	25
278	Abundance and Diurnal Trends of Fluorescent Bioaerosols in the Troposphere over Mt. Tai, China, in Spring. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4158-4173.	3.3	25
279	Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmospheric Chemistry and Physics, 2022, 22, 6449-6470.	4.9	25
280	Experimental diagenesis of fatty acids in a sediment: Changes in their existence forms upon heating Geochemical Journal, 1981, 15, 1-8.	1.0	24
281	Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4155-4168.	3.3	24
282	Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific. Atmospheric Chemistry and Physics, 2016, 16, 7695-7707.	4.9	24
283	Hydroxy Fatty Acids in Remote Marine Aerosols over the Pacific Ocean: Impact of Biological Activity and Wind Speed. ACS Earth and Space Chemistry, 2019, 3, 366-379.	2.7	24
284	Atmospheric transport of soil-derived dicarboxylic acids over the North Pacific Ocean. Die Naturwissenschaften, 1990, 77, 25-27.	1.6	23
285	High abundance of low molecular weight organic acids in hypersaline spring water associated with a salt diapir. Organic Geochemistry, 1992, 18, 469-476.	1.8	23
286	Ice core record of fatty acids over the past 450 years in Greenland. Geophysical Research Letters, 1996, 23, 2665-2668.	4.0	23
287	Significant alteration in the hygroscopic properties of urban aerosol particles by the secondary formation of organics. Geophysical Research Letters, 2008, 35, .	4.0	23
288	Compound-specific stable carbon and hydrogen isotopic compositions of n-alkanes in urban atmospheric aerosols from Tokyo. Geochemical Journal, 2010, 44, 419-430.	1.0	23

#	Article	IF	CITATIONS
289	Observation of new particle formation over a mid-latitude forest facing the North Pacific. Atmospheric Environment, 2013, 64, 77-84.	4.1	23
290	Paleoclimate variability in central Taiwan during the past 30Kyrs reflected by pollen, δ13CTOC, and n-alkane-ÎƊ records in a peat sequence from Toushe Basin. Journal of Asian Earth Sciences, 2013, 69, 166-176.	2.3	23
291	Influence of aerosol source regions and transport pathway on ÎƊ of terrestrial biomarkers in atmospheric aerosols from the East China Sea. Geochimica Et Cosmochimica Acta, 2013, 106, 164-176.	3.9	23
292	Time-resolved distributions of bulk parameters, diacids, ketoacids and α-dicarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes. Atmospheric Research, 2015, 153, 188-199.	4.1	23
293	Homologous series of n-alkanes (C19-C35), fatty acids (C12-C32) and n-alcohols (C8-C30) in atmospheric aerosols from central Alaska: Molecular distributions, seasonality and source indices. Atmospheric Environment, 2018, 184, 87-97.	4.1	23
294	Distributions and diurnal changes of low molecular weight organic acids and ^ ^alpha;-dicarbonyls in suburban aerosols collected at Mangshan, North China. Geochemical Journal, 2010, 44, e17-e22.	1.0	22
295	Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia. Atmospheric Environment, 2011, 45, 5266-5272.	4.1	22
296	Assessment for paleoclimatic utility of terrestrial biomarker records in the Okhotsk Sea sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64, 85-92.	1.4	22
297	Springtime variations of organic and inorganic constituents inÂsubmicron aerosols (PM1.0) from Cape Hedo, Okinawa. Atmospheric Environment, 2016, 130, 84-94.	4.1	22
298	Stable carbon and nitrogen isotopic compositions of fine aerosols (PM2.5) during an intensive biomass burning over Southeast Asia: Influence of SOA and aging. Atmospheric Environment, 2018, 191, 478-489.	4.1	22
299	Low molecular weight dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls as ozonolysis products of isoprene: Implication for the gaseous-phase formation of secondary organic aerosols. Science of the Total Environment, 2021, 769, 144472.	8.0	22
300	Isolation of individual fatty acids in sediments using preparative capillary gas chromatography (PCGC) for radiocarbon analysis at NIES-TERRA. Nuclear Instruments & Methods in Physics Research B, 2000, 172, 583-588.	1.4	21
301	Decreased surface salinity in the Sea of Okhotsk during the last glacial period estimated from alkenones. Geophysical Research Letters, 2005, 32, .	4.0	21
302	Ice core profiles of saturated fatty acids (C 12:0 –C 30:0) and oleic acid (C 18:1) from southern Alaska since 1734 AD: A link to climate change in the Northern Hemisphere. Atmospheric Environment, 2015, 100, 202-209.	4.1	21
303	Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim. Atmospheric Environment, 2016, 130, 105-112.	4.1	21
304	Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Science of the Total Environment, 2016, 544, 661-669.	8.0	21
305	Chemical composition of waste burning organic aerosols at landfill and urban sites in Delhi. Atmospheric Pollution Research, 2020, 11, 554-565.	3.8	21
306	Chemical characterization of wintertime aerosols over the Arabian Sea: Impact of marine sources and long-range transport. Atmospheric Environment, 2020, 239, 117749.	4.1	21

#	Article	IF	CITATIONS
307	Comprehensive PM2.5 Organic Molecular Composition and Stable Carbon Isotope Ratios at Sonla, Vietnam: Fingerprint of Biomass Burning Components. Aerosol and Air Quality Research, 2016, 16, 2618-2634.	2.1	21
308	Ozone alters the feeding behavior of the leaf beetle Agelastica coerulea (Coleoptera: Chrysomelidae) into leaves of Japanese white birch (Betula platyphylla var. japonica). Environmental Science and Pollution Research, 2017, 24, 17577-17583.	5.3	20
309	Homologous series of low molecular weight (C1-C10) monocarboxylic acids, benzoic acid and hydroxyacids in fine-mode (PM2.5) aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Atmospheric Environment, 2017, 167, 170-180.	4.1	20
310	Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls. Atmospheric Environment, 2007, 41, 790-796.	4.1	19
311	Spatial distributions of dicarboxylic acids, ï‰-oxoacids, pyruvic acid and α-dicarbonyls in the remote marine aerosols over the North Pacific. Marine Chemistry, 2015, 172, 1-11.	2.3	19
312	Hygroscopic growth of water-soluble matter extracted from remote marine aerosols over the western North Pacific: Influence of pollutants transported from East Asia. Science of the Total Environment, 2016, 557-558, 285-295.	8.0	19
313	New directions: Need for better understanding of source and formation process of phthalic acid in aerosols as inferred from aircraft observations over China. Atmospheric Environment, 2016, 140, 147-149.	4.1	19
314	Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes. Atmospheric Environment, 2017, 171, 237-247.	4.1	19
315	Tracing the Relative Significance of Primary versus Secondary Organic Aerosols from Biomass Burning Plumes over Coastal Ocean Using Sugar Compounds and Stable Carbon Isotopes. ACS Earth and Space Chemistry, 2019, 3, 1471-1484.	2.7	19
316	Enhanced atmospheric transport of soil derived organic matter in spring over the high Arctic. Geophysical Research Letters, 1996, 23, 3735-3738.	4.0	18
317	Spatio-temporal distributions of dicarboxylic acids, ï‰-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in the marine aerosols from the North and South Pacific. Atmospheric Research, 2017, 185, 158-168.	4.1	18
318	High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. Science of the Total Environment, 2020, 703, 134475.	8.0	18
319	Identification of 4-oxoheptanedioic acid in the marine atmosphere by capillary gas chromatography-mass spectrometry. Journal of Chromatography A, 1994, 687, 315-321.	3.7	17
320	Seasonal variations of low molecular weight hydroxy-dicarboxylic acids and oxaloacetic acid in remote marine aerosols from Chichijima Island in the western North Pacific (December) Tj ETQq0 0 0 rgBT /Over	loc 4.1 0 Tf	5012⁄17 Td (2
321	The organic molecular composition, diurnal variation, and stable carbon isotope ratios of PM2.5 in Beijing during the 2014 APEC summit. Environmental Pollution, 2018, 243, 919-928.	7.5	17
322	Distributions and sources of low-molecular-weight monocarboxylic acids in gas and particles from a deciduous broadleaf forest in northern Japan. Atmospheric Chemistry and Physics, 2019, 19, 2421-2432.	4.9	17
323	Sources and Radiative Absorption of Water oluble Brown Carbon in the High Arctic Atmosphere. Geophysical Research Letters, 2019, 46, 14881-14891.	4.0	17
324	Molecular and spațial distributions of dicarboxylic acids, oxocarboxylic acids, and <i>α</i> -dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean. Atmospheric Chemistry and Physics, 2020, 20, 6841-6860.	4.9	17

#	Article	IF	CITATIONS
325	Identification of isomeric hydroxy fatty acids in aerosol samples by capillary gas chromatography—mass spectrometry. Journal of Chromatography A, 1988, 438, 309-317.	3.7	16
326	Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 259-273.	3.3	16
327	Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing. Atmospheric Environment, 2015, 123, 18-24.	4.1	16
328	Seasonal and longitudinal distributions of atmospheric waterâ€soluble dicarboxylic acids, oxocarboxylic acids, and α â€dicarbonyls over the North Pacific. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5191-5213.	3.3	16
329	Characteristics, seasonality and sources of inorganic ions and trace metals in North-east Asian aerosols. Environmental Chemistry, 2015, 12, 338.	1.5	16
330	Hydroxy fatty acids in marine aerosols as microbial tracers: 4-year study on β- and ω-hydroxy fatty acids from remote Chichijima Island in the western North Pacific. Atmospheric Environment, 2015, 115, 89-100.	4.1	16
331	A new isolation method for biomass-burning tracers in snow: Measurements of p -hydroxybenzoic, vanillic, and dehydroabietic acids. Atmospheric Environment, 2015, 122, 142-147.	4.1	16
332	Aircraft measurement of dicarboxylic acids in the free tropospheric aerosols over the western to central North Pacific. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 777-786.	1.6	15
333	Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon. Biogeosciences, 2015, 12, 7071-7080.	3.3	15
334	Characterisation of water-soluble organic aerosols at a site on the southwest coast of India. Journal of Atmospheric Chemistry, 2016, 73, 181-205.	3.2	15
335	Hydroxy fatty acids in snow pit samples from Mount Tateyama in central Japan: Implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,641.	3.3	15
336	A sub-decadal trend in diacids in atmospheric aerosols in eastern Asia. Atmospheric Chemistry and Physics, 2016, 16, 585-596.	4.9	15
337	Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China. Atmospheric Chemistry and Physics, 2016, 16, 6407-6419.	4.9	15
338	Longitudinal distributions of dicarboxylic acids, <i>ï‰ </i> â€oxoacids, pyruvic acid, <i>α</i> â€dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling. Global Biogeochemical Cycles, 2016, 30, 534-548.	4.9	15
339	Effects of chemical composition and mixing state on sizeâ€resolved hygroscopicity and cloud condensation nuclei activity of submicron aerosols at a suburban site in northern Japan in summer. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9301-9318.	3.3	15
340	Dicarboxylic acids and related compounds in fine particulate matter aerosols in Huangshi, central China. Journal of the Air and Waste Management Association, 2019, 69, 513-526.	1.9	15
341	Ice core records of levoglucosan and dehydroabietic and vanillic acids from Aurora Peak in Alaska since the 1660s: a proxy signal of biomass-burning activities in the North Pacific Rim. Atmospheric Chemistry and Physics, 2020, 20, 597-612.	4.9	15
342	Measurement of Halogenated Dicarboxylic Acids in the Arctic Aerosols at Polar Sunrise. Journal of Atmospheric Chemistry, 2003, 44, 323-335.	3.2	14

#	Article	IF	CITATIONS
343	Photochemical histories of nonmethane hydrocarbons inferred from their stable carbon isotope ratio measurements over east Asia. Journal of Geophysical Research, 2009, 114, .	3.3	14
344	Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, northern Japan during summertime. Atmospheric Environment, 2012, 62, 622-630.	4.1	14
345	Emission of methyl chloride from a fern growing in subtropical, temperate, and coolâ€ŧemperate climate zones. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1142-1149.	3.0	14
346	Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2684-2699.	3.0	14
347	Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006. Atmospheric Environment, 2017, 154, 106-117.	4.1	14
348	Nighttime particle growth observed during spring in New Delhi: Evidences for the aqueous phase oxidation of SO2. Atmospheric Environment, 2018, 188, 82-96.	4.1	14
349	Organic tracers of fine aerosol particles in central Alaska: summertime composition and sources. Atmospheric Chemistry and Physics, 2019, 19, 14009-14029.	4.9	14
350	Multiphase MCM–CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014. Atmospheric Chemistry and Physics, 2020, 20, 6725-6747.	4.9	14
351	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve. Atmospheric Chemistry and Physics, 2021, 21, 11453-11465.	4.9	14
352	Vertical distribution of particle-phase dicarboxylic acids, oxoacids and <i>α</i> -dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 10331-10350.	4.9	14
353	Behavior of lipid compounds on laboratory heating of a Recent sediment Geochemical Journal, 1985, 19, 113-126.	1.0	13
354	ldentification of ï‰-oxocarboxylic acids as acetal esters in aerosols using capillary gas chromatography-mass spectrometry. Journal of Chromatography A, 1987, 390, 371-377.	3.7	13
355	Identification of aliphatic keto carboxylic acids in marine aerosols using capillary gas chromatography—mass spectrometry. Journal of Chromatography A, 1988, 438, 299-307.	3.7	13
356	The effects of accumulated refractory particles and the peak inert mode temperature on semi-continuous organic carbon and elemental carbon measurements during the CAREBeijing 2006 campaign. Atmospheric Environment, 2011, 45, 7192-7200.	4.1	13
357	Assessment of hydrogen isotopic compositions of <i>n</i> â€fatty acids as paleoclimate proxies in Lake Biwa sediments. Journal of Quaternary Science, 2012, 27, 884-890.	2.1	13
358	Dry-deposition of inorganic and organic nitrogen aerosols to the Arabian Sea: Sources, transport and biogeochemical significance in surface waters. Marine Chemistry, 2021, 231, 103938.	2.3	13
359	High Loadings of Water-Soluble Oxalic Acid and Related Compounds in PM2.5 Aerosols in Eastern Central India: Influence of Biomass Burning and Photochemical Processing. Aerosol and Air Quality Research, 2019, 9, 2625-2644.	2.1	13
360	Identification of hydroxy―and ketoâ€dicarboxylic acids in remote marine aerosols using gas chromatography/quadruple and timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 992-1000.	1.5	12

#	Article	IF	CITATIONS
361	Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8–C10 n-aldehydes in the presence of atmospheric aerosol components. Atmospheric Environment, 2016, 126, 290-297.	4.1	12
362	Seasonal Distributions and Stable Carbon Isotope Ratios of Water-Soluble Diacids, Oxoacids, and α-Dicarbonyls in Aerosols from Sapporo: Influence of Biogenic Volatile Organic Compounds and Photochemical Aging. ACS Earth and Space Chemistry, 2018, 2, 1220-1230.	2.7	12
363	Genomic identification of the long-chain alkenone producer in freshwater Lake Toyoni, Japan: implications for temperature reconstructions. Organic Geochemistry, 2018, 125, 189-195.	1.8	12
364	Investigation on the hygroscopicity of oxalic acid and atmospherically relevant oxalate salts under sub- and supersaturated conditions. Environmental Sciences: Processes and Impacts, 2018, 20, 1069-1080.	3.5	12
365	Source forensics of n-alkanes and n-fatty acids in urban aerosols using compound specific radiocarbon/stable carbon isotopic composition. Environmental Research Letters, 2020, 15, 074007.	5.2	12
366	Stabilities of carboxylic acids and phenols in los angeles rainwaters during storage. Water Research, 1990, 24, 1419-1423.	11.3	11
367	Implication of azelaic acid in a Greenland Ice Core for oceanic and atmospheric changes in high latitudes. Geophysical Research Letters, 1999, 26, 871-874.	4.0	11
368	Long-term (2001–2012) observation of the modeled hygroscopic growth factor of remote marine TSP aerosols over the western North Pacific: impact of long-range transport of pollutants and their mixing states. Physical Chemistry Chemical Physics, 2015, 17, 29344-29353.	2.8	11
369	Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations. Scientific Reports, 2015, 5, 14450.	3.3	11
370	Influence of forest fires on the formation processes of low molecular weight dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid and α-dicarbonyls in springtime fine (PM2.5) aerosols over Southeast Asia. Atmospheric Environment, 2021, 246, 118065.	4.1	11
371	The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?. Earth System Science Data, 2021, 13, 1561-1592.	9.9	11
372	Characterization of dicarboxylic acids, oxoacids, and α-dicarbonyls in PM2.5 within the urban boundary layer in southern China: Sources and formation pathways. Environmental Pollution, 2021, 285, 117185.	7.5	11
373	Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan. Atmospheric Chemistry and Physics, 2022, 22, 1373-1393.	4.9	11
374	Pb2+/Pb0 Redox Equilibria in Sodium Borate, Silicate, and Aluminosilicate Melts. Journal of the Electrochemical Society, 1989, 136, 1861-1864.	2.9	10
375	Radiocarbon variability of fatty acids in semi-urban aerosol samples. Nuclear Instruments & Methods in Physics Research B, 2004, 223-224, 842-847.	1.4	10
376	Contributions of modern and dead organic carbon to individual fatty acid homologues in spring aerosols collected from northern Japan. Journal of Geophysical Research, 2010, 115, .	3.3	10
377	Application of urea adduction technique to polluted urban aerosols for the determination of hydrogen isotopic composition of <i>n</i> -alkanes. International Journal of Environmental Analytical Chemistry, 2012, 92, 302-312.	3.3	10
378	Seasonal changes in TC and WSOC and their 13C isotope ratios in Northeast Asian aerosols: land surface–biosphere–atmosphere interactions. Acta Geochimica, 2017, 36, 355-358.	1.7	10

#	Article	IF	CITATIONS
379	Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Yearâ€round observations at Gosan, Jeju Island. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4112-4131.	3.3	10
380	Water-soluble low molecular weight organics in cloud water at Mt. Tai Mo Shan, Hong Kong. Science of the Total Environment, 2019, 697, 134095.	8.0	10
381	Distinctive Sources Govern Organic Aerosol Fractions with Different Degrees of Oxygenation in the Urban Atmosphere. Environmental Science & Technology, 2021, 55, 4494-4503.	10.0	10
382	Seasonal changes in stable carbon isotopic composition in the bulk aerosol and gas phases at a suburban site in Prague. Science of the Total Environment, 2022, 803, 149767.	8.0	10
383	Molecular characteristics of water-soluble dicarboxylic acids, ï‰-oxocarboxylic acids, pyruvic acid and α-dicarbonyls in the aerosols from the eastern North Pacific. Marine Chemistry, 2020, 224, 103812.	2.3	10
384	Springtime influences of Asian outflow and photochemistry on the distributions of diacids, oxoacids and α-dicarbonyls in the aerosols from the western North Pacific Rim. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1369341.	1.6	9
385	Occurrence of α , ï‰ -dicarboxylic acids and ï‰-oxoacids in surface waters of the Rhone River and fluxes into the Mediterranean Sea. Progress in Oceanography, 2018, 163, 136-146.	3.2	9
386	Evidence for brown carbon absorption over the Bay of Bengal during the southwest monsoon season: a possible oceanic source. Environmental Sciences: Processes and Impacts, 2020, 22, 1743-1758.	3.5	9
387	Compound-Specific Radiocarbon Analysis of Low Molecular Weight Dicarboxylic Acids in Ambient Aerosols Using Preparative Gas Chromatography: Method Development. Environmental Science and Technology Letters, 2021, 8, 135-141.	8.7	9
388	Measurement report: Diurnal and temporal variations of sugar compounds in suburban aerosols from the northern vicinity of Beijing, China – an influence of biogenic and anthropogenic sources. Atmospheric Chemistry and Physics, 2021, 21, 4959-4978.	4.9	9
389	Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer. Atmospheric Chemistry and Physics, 2021, 21, 12949-12963.	4.9	9
390	Aerosol Proteinaceous Matter in Coastal Okinawa, Japan: Influence of Long-Range Transport and Photochemical Degradation. Environmental Science & Technology, 2022, 56, 5256-5265.	10.0	9
391	Stable carbon isotopic compositions of low-molecularweight dicarboxylic acids, glyoxylic acid and glyoxal in tropical aerosols: implications for photochemical processes of organic aerosols. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 23702.	1.6	8
392	Water-Soluble Organic Nitrogen in High Mountain Snow Samples from Central Japan. Aerosol and Air Quality Research, 2016, 16, 632-639.	2.1	8
393	Implications of carbon isotope ratios of C27-C33alkanes and C37alkenes for the sources of organic matter in the southern ocean surface sediments. Geophysical Research Letters, 2000, 27, 233-236.	4.0	7
394	Stable carbon isotope ratios of ethane over the North Pacific: Atmospheric measurements and global chemical transport modeling. Journal of Geophysical Research, 2011, 116, .	3.3	7
395	Historical Trends of Biogenic SOA Tracers in an Ice Core from Kamchatka Peninsula. Environmental Science and Technology Letters, 2016, 3, 351-358.	8.7	7
396	Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India. Archives of Environmental Contamination and Toxicology, 2017, 73, 456-473.	4.1	7

#	Article	IF	CITATIONS
397	Biomass-burning derived aromatic acids in NIST standard reference material 1649b and the environmental implications. Atmospheric Environment, 2018, 185, 180-185.	4.1	7
398	Molecular markers for fungal spores and biogenic SOA over the Antarctic Peninsula: Field measurements and modeling results. Science of the Total Environment, 2021, 762, 143089.	8.0	7
399	Seasonal Characteristics of Biogenic Secondary Organic Aerosols Over Chichijima Island in the Western North Pacific: Impact of Biomass Burning Activity in East Asia. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032987.	3.3	7
400	Unraveling the sources of atmospheric organic aerosols over the Arabian Sea: Insights from the stable carbon and nitrogen isotopic composition. Science of the Total Environment, 2022, 827, 154260.	8.0	7
401	A Model Evaluation of the NO Titration Technique to Remove Atmospheric Oxidants for the Determination of Atmospheric Organic Compounds. Environmental Science & Technology, 2003, 37, 1589-1597.	10.0	6
402	In situ measurements of butane and pentane isomers over the subtropical North Pacific. Geochemical Journal, 2004, 38, 397-404.	1.0	6
403	Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by deciduous forest (Sapporo, northern Japan) during the summer of 2011. Atmospheric Chemistry and Physics, 2014, 14, 7519-7531.	4.9	6
404	¹³ C Probing of Ambient Photo-Fenton Reactions Involving Iron and Oxalic Acid: Implications for Oceanic Biogeochemistry. ACS Earth and Space Chemistry, 2020, 4, 964-976.	2.7	6
405	Seasonal and temporal variations of ambient aerosols in a deciduous broadleaf forest from northern Japan: Contributions of biomass burning and biological particles. Chemosphere, 2021, 279, 130540.	8.2	6
406	.OMEGAOxocarboxylic acids in the sediment trap and sediment samples from the North Pacific: Implication for the transport of photooxidation products to deep-sea environments Geochemical Journal, 1990, 24, 217-222.	1.0	5
407	<i>>n</i> -Alkanes in Fresh Snow in Hokkaido, Japan: Implications for Ice Core Studies. Arctic, Antarctic, and Alpine Research, 2013, 45, 119-131.	1.1	5
408	Large contribution of fine carbonaceous aerosols from municipal waste burning inferred from distributions of diacids and fatty acids. Environmental Research Communications, 2019, 1, 071005.	2.3	5
409	Compound-Specific Stable Carbon Isotope Ratios of Terrestrial Biomarkers in Urban Aerosols from Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 1896-1904.	2.7	5
410	Biomass Burning is an Important Source of Organic Aerosols in Interior Alaska. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034586.	3.3	5
411	Terrestrial lipid biomarkers in marine aerosols over the western North Pacific during 1990–1993 and 2006–2009. Science of the Total Environment, 2021, 797, 149115.	8.0	5
412	Stable carbon isotopic variation of long chain n-alkanoic acids in the equatorial Pacific sediments over the last 40Ma: Implications for expansion of C4 grassland in South America. Organic Geochemistry, 2014, 76, 62-71.	1.8	4
413	Photochemical Processing of Inorganic and Organic Species in the Canadian High Arctic Aerosols: Impact of Ammonium Cation, Transition Metals, and Dicarboxylic Acids before and after Polar Sunrise at Alert. ACS Earth and Space Chemistry, 2021, 5, 2865-2877.	2.7	4
414	Hydroxy Fatty Acids in Rainwater and Aerosols from Suburban Tokyo in Central Japan: The Impact of Long-Range Transport of Soil Microbes and Plant Waxes. ACS Earth and Space Chemistry, 2021, 5, 257-267.	2.7	4

#	Article	IF	CITATIONS
415	Aircraft measurement of dicarboxylic acids in the free tropospheric aerosols over the western to central North Pacific. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 777.	1.6	3
416	Sources and Formation Processes of Short-Chain Saturated Diacids (C2–C4) in Inhalable Particles (PM10) from Huangshi City, Central China. Atmosphere, 2017, 8, 213.	2.3	3
417	Dicarboxylic and Oxocarboxylic Acids in the Arctic Coastal Ocean (Beaufort Seaâ€Mackenzie Margin). Global Biogeochemical Cycles, 2019, 33, 927-940.	4.9	3
418	Observation of vertical profiles of NO, O ₃ , and VOCs to estimate their sources and sinks by inverse modeling in a Japanese larch forest. J Agricultural Meteorology, 2020, 76, 1-10.	1.5	3
419	Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China. Environmental Pollution, 2021, 291, 118114.	7.5	3
420	Implication of azelaic acid in a Greenland ice core for oceanic and atmospheric changes in high latitudes. Geophysical Research Letters, 1999, 26, 871-874.	4.0	3
421	Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China. Environmental Pollution, 2022, 294, 118578.	7.5	3
422	Ice Core Record of Polycyclic Aromatic Hydrocarbons over the Past 400 Years. Die Naturwissenschaften, 1994, 81, 502-505.	1.6	3
423	Tracer-based characterization of fine carbonaceous aerosol in Beijing during a strict emission control period. Science of the Total Environment, 2022, 841, 156638.	8.0	3
424	Tightly bound fatty acids in recent sediments. A study of saponification condition Geochemical Journal, 1987, 21, 219-225.	1.0	2
425	Missing ozone-induced potential aerosol formation in a suburban deciduous forest. Atmospheric Environment, 2017, 171, 91-97.	4.1	2
426	Total Carbon and Nitrogen Contents and Molecular Composition of Water Soluble Organic Matter in the Marine Aerosols from Western North to Tropical Central Pacific. Ocean Sciences Research, 2000, , 465-484.	0.1	2
427	Early diagenesis of organic matter in water of Lake Haruna. (I) Flux of organic matter to the bottom by determination of carbon and nitrogen of sediment trap sample, particulates and sediments Japanese Journal of Limnology, 1985, 46, 297-302.	0.1	2
428	Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements. Atmospheric Chemistry and Physics, 2022, 22, 5515-5533.	4.9	2
429	Corrigendum to "Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation" published in Atmos. Chem. Phys., 10, 6087–6096, doi:10.5194/acp-10-6087-2010. 2010. Atmospheric Chemistry and Physics. 2010. 10, 6601-6601.	4.9	1
430	Organic Aerosols in South and East Asia: Composition and Sources. Springer Remote Sensing/photogrammetry, 2018, , 379-408.	0.4	1
431	Decadal Variations in Hydroxy Fatty Acids Over Chichijima Island in the North Pacific: Longâ€Term Seasonal Variability in Plant and Microbial Markers. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033347.	3.3	1
432	Molecular distributions of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in aerosols over Tuoji Island in the Bohai Sea: Effects of East Asian continental outflow. Atmospheric Research, 2022, 272, 106154.	4.1	1

#	Article	IF	CITATIONS
433	Organic geochemistry of a 200-meter core sample from Lake Biwa. IV. Variation of fatty acid composition in the upper 5-meter layers Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1978, 54, 75-80.	3.8	0
434	Special Articles: Environmental Sciences and Analytical Chemistry. Determination of water soluble organic compounds in Arctic aerosols by capillary GC and GC/MS Bunseki Kagaku, 1994, 43, 837-843.	0.2	0
435	Correction to "High loadings and source strengths of organic aerosols in China― Geophysical Research Letters, 2007, 34, .	4.0	Ο
436	Alpine snowpit profiles of polar organic compounds from Mt. Tateyama central Japan: Atmospheric transport of organic pollutants with Asian dust. Atmospheric Environment, 2021, 244, 117923.	4.1	0
437	Relationship of 137Cs with Fungal Spore Tracers in the Ambient Aerosols from Fukushima after the 2011 Nuclear Accident, East Japan. Atmosphere, 2022, 13, 413.	2.3	0