
Rajeshkumar G

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 2021, 310, 127483.	9.3	251
2	A comprehensive review on natural fiber/ <scp>nanoâ€clay</scp> reinforced hybrid polymeric composites: Materials and technologies. Polymer Composites, 2021, 42, 3687-3701.	4.6	91
3	Influence of Sodium Hydroxide (NaOH) Treatment on Mechanical Properties and Morphological Behaviour of Phoenix sp.ÂFiber/Epoxy Composites. Journal of Polymers and the Environment, 2021, 29, 765-774.	5.0	73
4	An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fibre reinforced epoxy composites. Journal of Industrial Textiles, 2019, 49, 597-620.	2.4	65
5	Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose, 2021, 28, 5373.	4.9	58
6	Mechanical, water absorption and wear characteristics of novel polymeric composites: Impact of hybrid natural fibers and oil cake filler addition. Journal of Industrial Textiles, 2022, 51, 5910S-5937S.	2.4	56
7	Cellulose fiber from date palm petioles as potential reinforcement for polymer composites: Physicochemical and structural properties. Polymer Composites, 2021, 42, 3943-3953.	4.6	51
8	Dynamic Mechanical Properties and Free Vibration Characteristics of Surface Modified Jute Fiber/Nano-Clay Reinforced Epoxy Composites. Journal of Polymers and the Environment, 2021, 29, 1076-1088.	5.0	50
9	An Investigation into the Mechanical and Wear Characteristics of Hybrid Composites: Influence of Different Types and Content of Biodegradable Reinforcements. Journal of Natural Fibers, 2022, 19, 2823-2835.	3.1	48
10	Characterization of Phoenix sp. natural fiber as potential reinforcement of polymer composites. Journal of Industrial Textiles, 2016, 46, 667-683.	2.4	43
11	An Investigation into the Tribological Properties of Bidirectional Jute/Carbon Fiber Reinforced Polyester Hybrid Composites. Journal of Natural Fibers, 2022, 19, 943-953.	3.1	42
12	Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 2021, 23, 1277-1288.	3.0	41
13	The influence of fiber content and length on mechanical and water absorption properties of Calotropis Gigantea fiber reinforced epoxy composites. Journal of Industrial Textiles, 2019, 48, 1274-1290.	2.4	38
14	Synergistic effect of fiber content and length on mechanical and water absorption behaviors of <i>Phoenix</i> sp. fiber-reinforced epoxy composites. Journal of Industrial Textiles, 2017, 47, 211-232.	2.4	33
15	An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable <i>Phoenix</i> sp. fibre-reinforced epoxy composites. Journal of Industrial Textiles, 2020, 49, 1233-1251.	2.4	33
16	Enhancing the Free Vibration Characteristics of Epoxy Polymers Using Sustainable <i>Phoenix Sp</i> . Fibers and Nano-Clay for Machine Tool Applications. Journal of Natural Fibers, 2021, 18, 531-538.	3.1	32
17	Effect of sodium hydroxide treatment on dry sliding wear behavior of <i>Phoenix</i> sp. fiber reinforced polymer composites. Journal of Industrial Textiles, 2022, 51, 2819S-2834S.	2.4	31
18	Free Vibration Characteristics of Phoenix Sp Fiber Reinforced Polymer Matrix Composite Beams. Procedia Engineering, 2014, 97, 687-693.	1.2	26

Rajeshkumar G

#	Article	IF	CITATIONS
19	Improvement of Mechanical Properties of Coir/Epoxy Composites through Hybridization with Sisal and Palmyra Palm Fibers. Journal of Natural Fibers, 2022, 19, 475-484.	3.1	26
20	A New Study on Tribological Performance of <i>Phoenix Sp</i> . Fiber-Reinforced Epoxy Composites. Journal of Natural Fibers, 2021, 18, 2208-2219.	3.1	26
21	Characterization of Surface Modified <i>Phoenix sp</i> . Fibers for Composite Reinforcement. Journal of Natural Fibers, 2021, 18, 2033-2044.	3.1	22
22	Sustainable Development of <i>Cissus Quadrangularis</i> Stem Fiber/epoxy Composite on Abrasive Wear Rate. Journal of Natural Fibers, 2022, 19, 9283-9295.	3.1	21
23	Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: Consequence of sodium bicarbonate treatment. Journal of Industrial Textiles, 2022, 51, 360S-377S.	2.4	21
24	Evaluation of Mechanical and Water Absorption Behaviors of Jute/Carbon Fiber Reinforced Polyester Hybrid Composites. Journal of Natural Fibers, 2022, 19, 6521-6533.	3.1	20
25	Tribological and Thermo-Mechanical Performance of Chemically Modified Musa Acuminata / Corchorus Capsularis Reinforced Hybrid Composites. Journal of Natural Fibers, 2022, 19, 4640-4653.	3.1	19
26	Enhancement of Mechanical Behavior of PLA Matrix Using Tamarind and Date Seed Micro Fillers. Journal of Natural Fibers, 2022, 19, 4662-4674.	3.1	19
27	Performance of Surface Modified Pineapple Leaf Fiber and Its Applications. Green Energy and Technology, 2020, , 309-321.	0.6	18
28	Nanotechnology based solutions to combat zoonotic viruses with special attention to SARS, MERS, and COVID 19: Detection, protection and medication. Microbial Pathogenesis, 2021, 159, 105133.	2.9	16
29	Mechanical properties of polymer matrix composites: Effect of hybridization. Materials Today: Proceedings, 2021, 34, 536-538.	1.8	14
30	Effect of Matrix Material on the Free Vibration Characteristics of Phoenix sp. Fiber Reinforced Polymer Matrix Composites. Materials Today: Proceedings, 2018, 5, 11227-11232.	1.8	13
31	Improvement of mechanical and thermal properties of hybrid composites through addition of halloysite nanoclay for light weight structural applications. Journal of Industrial Textiles, 2022, 51, 4880S-4898S.	2.4	13
32	Mechanical and free vibration properties of <i>Phoenix sp</i> . fiber reinforced epoxy composites: Influence of sodium bicarbonate treatment. Polymer Composites, 2021, 42, 6362-6369.	4.6	8
33	Tissue Mimicking Material an Idealized Tissue Model for Clinical Applications: A Review. Materials Today: Proceedings, 2020, 22, 2696-2703.	1.8	7
34	Investigation on Mechanical and Wear Behaviors of LM6 Aluminium Alloy-Based Hybrid Metal Matrix Composites Using Stir Casting Process. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.8	7
35	Characterization of sustainable natural fiber reinforced geopolymer composites. Polymer Composites, 0, , .	4.6	7
36	The Role of Stacking Order on Mechanical Properties of Glass/Carbon Reinforced Epoxy Hybrid Composites Prepared by Resin Infusion Technique. Materials Today: Proceedings, 2020, 22, 2446-2451.	1.8	6

RAJESHKUMAR G

0

#	Article	IF	CITATIONS
37	Influence of Phoenix sp. Fiber Content on the Viscoelastic Properties of Polymer Composites. Lecture Notes in Mechanical Engineering, 2021, , 131-139.	0.4	6
38	A Comprehensive Review on Manufacturing Methods and Characterization of Al6061 Composites. Materials Today: Proceedings, 2020, 22, 2597-2605.	1.8	2
39	Optimization and characterization of pectin recovered from Persea americana peel using statistical and non-statistical techniques. Biomass Conversion and Biorefinery, 0, , 1.	4.6	2
40	Eco-Friendly Wood Fibre Composites with High Bonding Strength and Water Resistance. Composites Science and Technology, 2021, , 105-122.	0.6	2
41	Influence of sodium bicarbonate treatment on the free vibration characteristics of Phoenix sp. fiber loaded polyester composites. Materials Today: Proceedings, 2021, , .	1.8	2
42	Production of biodegradable films and blends from proteins. , 2022, , 681-692.		2
43	Novel plant, their composites and applications. , 2022, , 437-456.		2
44	Experimental Analysis of Tribological Behaviour of Jute Fiber-Reinforced Nanoclay Filled Epoxy Composites. Lecture Notes in Mechanical Engineering, 2021, , 1-14.	0.4	1
45	A Comprehensive Review on Mechanical Properties of Natural Cellulosic Fiber Reinforced PLA Composites. Lecture Notes in Mechanical Engineering, 2021, , 227-237.	0.4	1
46	Influence of Processing Variables on Tensile Strength and Water Absorption of Natural Fibers Hybrid Composites. Journal of Natural Fibers, 2022, 19, 10846-10857.	3.1	1
47	Investigation of mechanical and wear properties of Al6061/Si ₃ N ₄ /MgO hybrid composite fabricated by stir casting method. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 702-709.	2.5	1
48	Dynamic Characteristics of Twisted Composite Panels. International Journal of Recent Technology and Engineering, 2019, 8, 6488-6499.	0.2	0
49	Natural Fibers Based Phenolic Hybrid Composites. , 2021, , 77-87.		0
50	Natural Fiber-Reinforced Biocomposites. , 2022, , .		0
51	Mechanical behavior of elastomer blends and composites. , 2022, , 127-147.		0

52 PLA Based Sustainable Composites. , 2022, , .