Daniela De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/775052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying Efficiency Gains of Innovative Designs of Two-Arm Vaccine Trials for COVID-19 Using an Epidemic Simulation Model. Statistics in Biopharmaceutical Research, 2022, 14, 33-41.	0.8	8
2	Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infectious Diseases, The, 2022, 22, 35-42.	9.1	612
3	Hospitalization and Mortality Risk for COVID-19 Cases With SARS-CoV-2 AY.4.2 (VUI-21OCT-01) Compared to Non-AY.4.2 Delta Variant Sublineages. Journal of Infectious Diseases, 2022, 226, 808-811.	4.0	7
4	Trends in outcomes following COVID-19 symptom onset in Milan: a cohort study. BMJ Open, 2022, 12, e054859.	1.9	1
5	Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet, The, 2022, 399, 1303-1312.	13.7	889
6	Adjusting for time of infection or positive test when estimating the risk of a post-infection outcome in an epidemic. Statistical Methods in Medical Research, 2022, 31, 1942-1958.	1.5	9
7	COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study. Scientific Reports, 2022, 12, .	3.3	39
8	Real-time nowcasting and forecasting of COVID-19 dynamics in England: the first wave. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200279.	4.0	62
9	Risk of hospital admission for patients with SARS-CoV-2 variant B.1.1.7: cohort analysis. BMJ, The, 2021, 373, n1412.	6.0	114
10	Tracking elimination of HIV transmission in men who have sex with men in England: a modelling study. Lancet HIV,the, 2021, 8, e440-e448.	4.7	11
11	Applying prospective genomic surveillance to support investigation of hospital-onset COVID-19. Lancet Infectious Diseases, The, 2021, 21, 916-917.	9.1	14
12	Trends in undiagnosed HIV prevalence in England and implications for eliminating HIV transmission by 2030: an evidence synthesis model. Lancet Public Health, The, 2021, 6, e739-e751.	10.0	10
13	Evaluating the power of the causal impact method in observational studies of HCV treatment as prevention. Statistical Communications in Infectious Diseases, 2021, 13, .	0.2	1
14	Risk factors associated with severe hospital burden of COVID-19 disease in Regione Lombardia: a cohort study. BMC Infectious Diseases, 2021, 21, 1041.	2.9	9
15	A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes. Journal of the Royal Statistical Society Series A: Statistics in Society, 2020, 183, 1437-1459.	1.1	10
16	Estimating the prevalence of problem drug use from drugâ€related mortality data. Addiction, 2020, 115, 2393-2404.	3.3	20
17	Forecasting the 2017/2018 seasonal influenza epidemic in England using multiple dynamic transmission models: a case study. BMC Public Health, 2020, 20, 486.	2.9	7
18	Efficient real-time monitoring of an emerging influenza pandemic: How feasible?. Annals of Applied Statistics, 2020, 14, 74-93.	1.1	8

#	Article	IF	CITATIONS
19	MultiBUCS : A Parallel Implementation of the <i>BUCS</i> Modeling Framework for Faster Bayesian Inference. Journal of Statistical Software, 2020, 95, .	3.7	29
20	Estimating age-stratified influenza-associated invasive pneumococcal disease in England: A time-series model based on population surveillance data. PLoS Medicine, 2019, 16, e1002829.	8.4	16
21	Evaluating the population impact of hepatitis C direct acting antiviral treatment as prevention for people who inject drugs (EPIToPe) – a natural experiment (protocol). BMJ Open, 2019, 9, e029538.	1.9	30
22	Monitoring the hepatitis C epidemic in England and evaluating intervention scaleâ€up using routinely collected data. Journal of Viral Hepatitis, 2019, 26, 541-551.	2.0	34
23	The UK's pandemic influenza research portfolio: a model for future research on emerging infections. Lancet Infectious Diseases, The, 2019, 19, e295-e300.	9.1	37
24	Extending Bayesian back-calculation to estimate age and time specific HIV incidence. Lifetime Data Analysis, 2019, 25, 757-780.	0.9	6
25	Evidence Synthesis for Stochastic Epidemic Models. Statistical Science, 2018, 33, 34-43.	2.8	17
26	Elimination prospects of the Dutch HIV epidemic among men who have sex with men in the era of preexposure prophylaxis. Aids, 2018, 32, 2615-2623.	2.2	18
27	Towards elimination of <scp>HIV</scp> transmission, <scp>AIDS</scp> and <scp>HIV</scp> â€related deaths in the <scp>UK</scp> . HIV Medicine, 2018, 19, 505-512.	2.2	45
28	Exploiting routinely collected severe case data to monitor and predict influenza outbreaks. BMC Public Health, 2018, 18, 790.	2.9	3
29	Monitoring of the HIV Epidemic Using Routinely Collected Data: The Case of the United Kingdom. AIDS and Behavior, 2017, 21, 83-90.	2.7	21
30	Real-time modelling of a pandemic influenza outbreak. Health Technology Assessment, 2017, 21, 1-118.	2.8	7
31	New treatments for hepatitis C virus (HCV): scope for preventing liver disease and HCV transmission in England. Journal of Viral Hepatitis, 2016, 23, 631-643.	2.0	37
32	Reconstructing a spatially heterogeneous epidemic: Characterising the geographic spread of 2009 A/H1N1pdm infection in England. Scientific Reports, 2016, 6, 29004.	3.3	11
33	Effect of pre-exposure prophylaxis and combination HIV prevention for men who have sex with men in the UK: a mathematical modelling study. Lancet HIV,the, 2016, 3, e94-e104.	4.7	68
34	Estimating the number of people with hepatitis C virus who have ever injected drugs and have yet to be diagnosed: an evidence synthesis approach for Scotland. Addiction, 2015, 110, 1287-1300.	3.3	22
35	<scp>HCV</scp> treatment rates and sustained viral response among people who inject drugs in seven <scp>UK</scp> sites: real world results and modelling of treatment impact. Journal of Viral Hepatitis, 2015, 22, 399-408.	2.0	86
36	Potential impact on HIV incidence of higher HIV testing rates and earlier antiretroviral therapy initiation in MSM. Aids, 2015, 29, 1855-1862.	2.2	49

#	Article	IF	CITATIONS
37	Hepatitis C virus treatment as prevention in people who inject drugs. Current Opinion in Infectious Diseases, 2015, 28, 576-582.	3.1	78
38	Estimating HIV Incidence, Time to Diagnosis, and the Undiagnosed HIV Epidemic Using Routine Surveillance Data. Epidemiology, 2015, 26, 653-660.	2.7	79
39	Factors affecting repeated cessations of injecting drug use and relapses during the entire injecting career among the Edinburgh Addiction Cohort. Drug and Alcohol Dependence, 2015, 151, 76-83.	3.2	31
40	Four key challenges in infectious disease modelling using data from multiple sources. Epidemics, 2015, 10, 83-87.	3.0	59
41	Defining populations and injecting parameters among people who inject drugs: Implications for the assessment of hepatitis C treatment programs. International Journal of Drug Policy, 2015, 26, 950-957.	3.3	42
42	Incidence of <i>Chlamydia trachomatis</i> infection in women in England: two methods of estimation. Epidemiology and Infection, 2014, 142, 562-576.	2.1	10
43	Bayesian Emulation and Calibration of a Dynamic Epidemic Model for A/H1N1 Influenza. Journal of the American Statistical Association, 2014, 109, 1398-1411.	3.1	43
44	Increased uptake and new therapies are needed to avert rising hepatitis C-related end stage liver disease in England: Modelling the predicted impact of treatment under different scenarios. Journal of Hepatology, 2014, 61, 530-537.	3.7	76
45	Estimation of HIV Burden through Bayesian Evidence Synthesis. Statistical Science, 2014, 29, .	2.8	10
46	HIV incidence in men who have sex with men in England and Wales 2001–10: a nationwide population study. Lancet Infectious Diseases, The, 2013, 13, 313-318.	9.1	100
47	Multiple parameter evidence synthesis—a potential solution for when information on drug use and harm is in conflict. Addiction, 2013, 108, 1529-1531.	3.3	16
48	Conflict Diagnostics in Directed Acyclic Graphs, with Applications in Bayesian Evidence Synthesis. Statistical Science, 2013, 28, .	2.8	33
49	Premature Mortality in Scottish Injecting Drug Users: A Life-history Approach. Scottish Medical Journal, 2012, 57, 38-42.	1.3	8
50	Hepatitis C prevalence in England remains low and varies by ethnicity: an updated evidence synthesis. European Journal of Public Health, 2012, 22, 187-192.	0.3	79
51	Estimating Trends in Incidence, Time-to-Diagnosis and Undiagnosed Prevalence using a CD4-based Bayesian Back-calculation. Statistical Communications in Infectious Diseases, 2012, 4, .	0.2	5
52	Spatial mapping of hepatitis C prevalence in recent injecting drug users in contact with services. Epidemiology and Infection, 2012, 140, 1054-1063.	2.1	7
53	P1-S4.26 Duration, incidence and prevalence of Chlamydia trachomatis in women: estimation by multi-parameter synthesis. Sexually Transmitted Infections, 2011, 87, A171-A171.	1.9	0
54	Estimating time to onset of swine influenza symptoms after initial novel A(H1N1v) viral infection. Epidemiology and Infection, 2011, 139, 1418-1424.	2.1	10

#	Article	IF	CITATIONS
55	The impact of needle and syringe provision and opiate substitution therapy on the incidence of hepatitis C virus in injecting drug users: pooling of UK evidence. Addiction, 2011, 106, 1978-1988.	3.3	271
56	Mathematical models for the study of HIV spread and control amongst men who have sex with men. European Journal of Epidemiology, 2011, 26, 695-709.	5.7	21
57	Bayesian evidence synthesis for a transmission dynamic model for HIV among men who have sex with men. Biostatistics, 2011, 12, 666-681.	1.5	30
58	Multiâ€state Markov models for disease progression in the presence of informative examination times: An application to hepatitis C. Statistics in Medicine, 2010, 29, 1161-1174.	1.6	37
59	Estimating the prevalence of ex-injecting drug use in the population. Statistical Methods in Medical Research, 2009, 18, 381-395.	1.5	56
60	An evidence synthesis approach to estimating Hepatitis C Prevalence in England and Wales. Statistical Methods in Medical Research, 2009, 18, 361-379.	1.5	65
61	Hepatitis C Infection Among Injecting Drug Users in England and Wales (1992-2006): There and Back Again?. American Journal of Epidemiology, 2009, 170, 352-360.	3.4	50
62	Cost-effectiveness of pegylated interferon and ribavirin for patients with chronic hepatitis C treated in routine clinical practice. International Journal of Technology Assessment in Health Care, 2009, 25, 171-180.	0.5	41
63	Estimates of Human Immunodeficiency Virus Prevalence and Proportion Diagnosed Based on Bayesian Multiparameter Synthesis of Surveillance Data. Journal of the Royal Statistical Society Series A: Statistics in Society, 2008, 171, 541-580.	1.1	64
64	Response rates to combination therapy for chronic HCV infection in a clinical setting and derivation of probability tables for individual patient management. Journal of Viral Hepatitis, 2008, 15, 271-278.	2.0	34
65	Estimating hepatitis C prevalence in England and Wales by synthesizing evidence from multiple data sources. Assessing data conflict and model fit. Biostatistics, 2008, 9, 715-734.	1.5	38
66	The burden of hepatitis C in England. Journal of Viral Hepatitis, 2007, 14, 570-576.	2.0	57
67	Bayesian back-calculation using a multi-state model with application to HIV. Statistics in Medicine, 2005, 24, 3991-4007.	1.6	45
68	Bayesian projection of the acquired immune deficiency syndrome epidemic. Journal of the Royal Statistical Society Series C: Applied Statistics, 2002, 47, 449-498.	1.0	20
69	Estimating the Relative Incidence of Heroin Use: Application of a Method for Adjusting Observed Reports of First Visits to Specialized Drug Treatment Agencies. American Journal of Epidemiology, 2001, 153, 632-641.	3.4	27
70	Assessing the impact of national anti-HIV sexual health campaigns: trends in the transmission of HIV and other sexually transmitted infections in England. Sexually Transmitted Infections, 2001, 77, 242-247.	1.9	65
71	Impact of HIV on adult (15-54) mortality in London: 1979-96. Sexually Transmitted Infections, 1999, 75, 385-388.	1.9	9
72	Bayesian conditional-independence modeling of the AIDS epidemic in England and Wales. Physica D: Nonlinear Phenomena, 1999, 133, 145-151.	2.8	1

#	Article	IF	CITATIONS
73	New therapy explains the fall in AIDS incidence with a substantial rise in number of persons on treatment expected. Aids, 1999, 13, 103-108.	2.2	40
74	Bootstrapping unit root tests. Applied Economics, 1997, 29, 1155-1161.	2.2	6
75	A Markov model for HIV disease progression including the effect of HIV diagnosis and treatment: Application to AIDS prediction in England and Wales. , 1997, 16, 2191-2210.		90
76	Acquired Immune Deficiency Syndrome Predictions for England and Wales (1992-97): Sensitivity Analysis, Information, Decision. Journal of the Royal Statistical Society Series A: Statistics in Society, 1995, 158, 505.	1.1	16
77	Estimation of the rate of diagnosis of HIV infection in HIV infected individuals. Biometrika, 1994, 81, 287-294.	2.4	25
78	The Use of Human Immunodeficiency Virus Diagnosis Information in Monitoring the Acquired Immune Deficiency Syndrome Epidemic. Journal of the Royal Statistical Society Series A: Statistics in Society, 1994, 157, 3.	1.1	23
79	Estimating Acquired Immune Deficiency Syndrome Incidence Accounting for Reporting Delay. Journal of the Royal Statistical Society Series A: Statistics in Society, 1994, 157, 31.	1.1	6
80	Analytical and Bootstrap Approximations to Estimator Distributions inL1Regression. Journal of the American Statistical Association, 1993, 88, 1310-1316.	3.1	36
81	AIDS: the statistical basis for public health. Statistical Methods in Medical Research, 1993, 2, 75-91.	1.5	12
82	Nowcasting COVIDâ€19 deaths in England by age and region. Journal of the Royal Statistical Society Series C: Applied Statistics, 0, , .	1.0	2
83	A comparison of two frameworks for multi-state modelling, applied to outcomes after hospital admissions with COVID-19. Statistical Methods in Medical Research. 0096228022211067	1.5	7