Alexander S Vinogradov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750426/publications.pdf Version: 2024-02-01

ALEXANDER S VINOCRADOV

#	Article	IF	CITATIONS
1	Controlling graphene corrugation on lattice-mismatched substrates. Physical Review B, 2008, 78, .	3.2	438
2	Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states. Surface Science, 2005, 582, 21-30.	1.9	220
3	Influence of chemical interaction at the lattice-mismatchedhâ^'BNâ^•Rh(111)andhâ^'BNâ^•Pt(111)interfaces on the overlayer morphology. Physical Review B, 2007, 75, .	3.2	139
4	From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. ACS Nano, 2015, 9, 8997-9011.	14.6	127
5	Formation and Structure of Graphene Waves on Fe(110). Physical Review Letters, 2012, 109, 026101.	7.8	122
6	Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chemical Physics Letters, 2007, 446, 119-123.	2.6	113
7	Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons: Combined Core-Level Spectroscopy and STM Study. Journal of Physical Chemistry C, 2014, 118, 12532-12540.	3.1	113
8	Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS Nano, 2019, 13, 14511-14518.	14.6	99
9	A single h-BN layer on Pt(111). Surface Science, 2008, 602, 1722-1726.	1.9	94
10	Ni3d–BNÏ€hybridization at thehâ^'BNâ^•Ni(111)interface observed with core-level spectroscopies. Physical Review B, 2004, 70, .	3.2	90
11	Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon, 2010, 48, 2708-2721.	10.3	83
12	Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X=Cl, Br, I) nanostructures. Carbon, 2012, 50, 4021-4039.	10.3	71
13	Electronic structure of Ni(II) porphyrins and phthalocyanine studied by soft X-ray absorption spectroscopy. Chemical Physics, 2007, 332, 318-324.	1.9	65
14	Correlations in the electronic structure of half-metallic ferromagneticCrO2films: An x-ray absorption and resonant photoemission spectroscopy study. Physical Review B, 2005, 72, .	3.2	57
15	Adsorption-induced gap states of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>h</mml:mi><mml:mtext>â^'</mml:mtext><mml:mtext> mathvariant="normal">B<mml:mi mathvariant="normal">N</mml:mi </mml:mtext></mml:mrow></mml:math> on metal surfaces. Physical Review B,	3.2	56
16	Low-lying unoccupied electronic states in3dtransition-metal fluorides probed by NEXAFS at theF1sthreshold. Physical Review B, 2005, 71, .	3.2	51
17	Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy. Physical Review B, 2009, 79, .	3.2	48
18	Controllable oxidation of h-BN monolayer on Ir(111) studied by core-level spectroscopies. Surface Science, 2012, 606, 564-570.	1.9	44

#	Article	IF	CITATIONS
19	NMR and NEXAFS Study of Various Graphite Fluorides. Journal of Physical Chemistry C, 2013, 117, 13564-13572.	3.1	40
20	Formation and temperature evolution of Au nanoparticles supported on the h-BN nanomesh. Surface Science, 2008, 602, 1250-1255.	1.9	36
21	An x-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin. Journal of Physics Condensed Matter, 2008, 20, 235207.	1.8	32
22	Impact of Oxygen Coadsorption on Intercalation of Cobalt under the h-BN Nanomesh. Nano Letters, 2009, 9, 2780-2787.	9.1	30
23	Controllable p-doping of graphene on Ir(111) by chlorination with FeCl ₃ . Journal of Physics Condensed Matter, 2012, 24, 314202.	1.8	27
24	Oxidation effects in epitaxial Fe3O4 layers on MgO and MgAl2O4 substrates studied by X-ray absorption, fluorescence and photoemission. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 207-212.	3.5	25
25	Molecular effects in solidNaNO3observed by x-ray absorption and resonant Auger spectroscopy. Physical Review B, 2002, 65, .	3.2	23
26	Fabrication and characterization of fluorinated single-walled carbon nanotubes. Nanotechnologies in Russia, 2009, 4, 60-78.	0.7	23
27	Comment on "Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity― ACS Nano, 2015, 9, 3399-3403.	14.6	22
28	Observation of back-donation in 3d metal cyanide complexes through N K absorption spectra. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 813-818.	1.7	20
29	Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes. Physics of the Solid State, 2010, 52, 876-883.	0.6	20
30	Honeycomb Boron on Al(111): From the Concept of Borophene to the Two-Dimensional Boride. ACS Nano, 2021, 15, 15153-15165.	14.6	20
31	Quasiatomic treatment of near-edge-structure features in X-ray absorption spectra of first-row polyatomic systems. Physica Scripta, 1990, 41, 160-163.	2.5	19
32	X-RAY ABSORPTION EVIDENCE FOR THE BACK-DONATION IN IRON CYANIDE COMPLEXES. Surface Review and Letters, 2002, 09, 359-364.	1.1	19
33	The formation and properties of one-dimensional FeHal2 (Hal = Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes. Nanotechnologies in Russia, 2009, 4, 634-646.	0.7	19
34	A simple system of the short-wave synchrotron radiation prevention in the 30 Ã to 180 Ã wavelength range. Nuclear Instruments & Methods, 1978, 152, 133-134.	1.2	18
35	The Identification of Cu–O–C Bond in Cu/MWCNTs Hybrid Nanocomposite by XPS and NEXAFS Spectroscopy. Nanomaterials, 2021, 11, 2993.	4.1	18
36	One Precursor but Two Types of Graphene Nanoribbons: On-Surface Transformations of 10,10′-Dichloro-9,9′-bianthryl on Ag(111). Journal of Physical Chemistry C, 2019, 123, 8892-8901.	3.1	17

#	Article	IF	CITATIONS
37	Comparative NEXAFS, NMR, and FTIR Study of Various-Sized Nanodiamonds: As-Prepared and Fluorinated. Journal of Physical Chemistry C, 2015, 119, 835-844.	3.1	16
38	Studies of Buried Layers and Interfaces of Tungsten Carbide Coatings on the MWCNT Surface by XPS and NEXAFS Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 4736.	2.5	15
39	Electronic structure of FeF2and FeF3studied by x-ray absorption and fluorescence spectroscopy. Physica Scripta, 2005, T115, 1074-1076.	2.5	14
40	Effect of substrate nanopatterning on the growth and structure of pentacene films. Physical Review B, 2010, 81, .	3.2	14
41	Electronic structure of copper halides CuI and CuCI: A comparative X-Ray photoelectron and absorption spectroscopy study. Physics of the Solid State, 2013, 55, 1136-1147.	0.6	14
42	Nitrogen and oxygen core excitations in solid NaNO2 studied by X-ray absorption and resonant photoemission. Chemical Physics, 1999, 249, 249-258.	1.9	13
43	Molecular nature of resonant x-ray scattering in solidLiNO3. Physical Review B, 2004, 69, .	3.2	13
44	Comparative Study of the Structural Features and Electrochemical Properties of Nitrogen-Containing Multi-Walled Carbon Nanotubes after Ion-Beam Irradiation and Hydrochloric Acid Treatment. Nanomaterials, 2021, 11, 2163.	4.1	13
45	Hole doping of graphene supported on Ir(111) by AlBr3. Applied Physics Letters, 2013, 102, 061601.	3.3	12
46	Characterization of fluorinated multiwalled carbon nanotubes by x-ray absorption spectroscopy. Physics of the Solid State, 2008, 50, 587-594.	0.6	11
47	An innovative gas sensor system designed from a sensitive organic semiconductor downstream a nanocarbonaceous chemical filter for selective detection of NO2 in an environmental context. Part II: Interpretations of O3/nanocarbons and NO2/nanocarbons interactions. Sensors and Actuators B: Chemical 2012, 173, 652-658	7.8	11
48	Characterization of fluorinated multiwalled carbon nanotubes with X-ray absorption, photoelectron and emission spectroscopies. Applied Physics A: Materials Science and Processing, 2009, 94, 445-448.	2.3	10
49	Features of metal atom 2p excitations and electronic structure of 3d-metal phthalocyanines studied by X-ray absorption and resonant photoemission. Applied Surface Science, 2013, 267, 132-135.	6.1	10
50	Effect of electron injection in copper-contacted graphene nanoribbons. Nano Research, 2016, 9, 2735-2746.	10.4	10
51	Effect of interference inside surroundings on XANES. OK-shell photoabsorption in N2O. Physica Scripta, 1991, 44, 399-404.	2.5	9
52	The structural evolution of graphene/Fe(110) systems upon annealing. Carbon, 2017, 111, 113-120.	10.3	9
53	The oscillator strength of the ï€g shape resonance in the absorption K-spectrum of a nitrogen molecule. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 395-398.	0.6	8
54	A carbonaceous chemical filter for the selective detection of NO2 in the environment. Carbon, 2013, 52, 17-29.	10.3	8

#	Article	IF	CITATIONS
55	Strong Participator Channels in the NonRadiative Resonant Decay of B 1s Excitation in B2O3. Physica Scripta, 2005, , 1071.	2.5	7
56	NEXAFS Spectra of Polymerâ€nanocarbon Composites. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 471-474.	2.1	7
57	Electronic Structure of Cul@SWCNT Nanocomposite Studied by X-Ray Absorption Spectroscopy. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 574-578.	2.1	7
58	Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies. Physical Chemistry Chemical Physics, 2021, 23, 11015-11027.	2.8	7
59	Resonant Auger spectroscopy in solid alkali nitrates as a probe of nuclear motion in the core-excited NO3â^' anion. Chemical Physics Letters, 2003, 368, 125-131.	2.6	6
60	Specific features of the electronic structure of fluorinated multiwalled carbon nanotubes in the near-surface region. Physics of the Solid State, 2009, 51, 1961-1971.	0.6	6
61	X-ray absorption investigation of the electronic structure of the Cul@SWCNT nanocomposite. Physics of the Solid State, 2011, 53, 643-653.	0.6	6
62	High resolution F1s absorption spectra of solid fluorides of 3d elements. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 862-869.	0.6	5
63	Decay of core excitations in bulk h-BN studied with resonant Auger spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2005, 148, 59-64.	1.7	5
64	Electronic Structure of Fluorinated Single-Walled Carbon Nanotubes Studied by X-Ray Absorption and Photoelectron Spectroscopy. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 590-594.	2.1	5
65	Features of Resonant FKLLAuger Spectra from Fluorinated Multi-Walled Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 600-604.	2.1	5
66	The Hybridized M3dF2p Character of LowEnergy Unoccupied Electron States in 3d Metal Fluorides Observed by F 1s Absorption. Physica Scripta, 2005, , 510.	2.5	4
67	Oscillator strengths for the shape resonances in the N K absorption spectrum of NaNO3 measured with the use of synchrotron radiation. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.78	43 d.% rgBT	/@verlock 1
68	Electronic Structure of Fluorinated Carbon Nanotubes. , 2010, , .		4
69	The Valence Band Structure of the [Ni(Salen)] Complex: An Ultraviolet, Soft X-ray and Resonant Photoemission Spectroscopy Study. International Journal of Molecular Sciences, 2022, 23, 6207.	4.1	3
70	Theoretical treatment of X-ray absorption fine structure by the localized orbitals method. Crystal Research and Technology, 1988, 23, 831-834.	1.3	2
71	Oscillator strengths of the vibrational and Rydberg transitions in the 1s absorption spectrum of a nitrogen molecule. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2007, 102, 367-370.	0.6	2
72	Special features of structural organization and magnetic properties of quasi-one-dimensional organoiron nanostructures on a silica support. Russian Journal of General Chemistry, 2008, 78, 2299-2307.	0.8	2

Alexander S Vinogradov

#	Article	IF	CITATIONS
73	Gas permeability properties of modified membranes based on exfoliated graphite. Desalination and Water Treatment, 2010, 14, 192-195.	1.0	2
74	Evolution of Cul/Graphene/Ni(111) System during Vacuum Annealing. Journal of Physical Chemistry C, 2015, 119, 12434-12444.	3.1	2
75	The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing. Applied Sciences (Switzerland), 2021, 11, 11646.	2.5	2
76	Synthesis of Iron-Oxygen Nanostructures on Silicon and Analysis of Their Structure by NEXAFS Spectroscopy. Russian Journal of General Chemistry, 2005, 75, 1864-1869.	0.8	1
77	Study of nanostructured materials by optical and photoelectron spectroscopy. Crystallography Reports, 2006, 51, 870-880.	0.6	1
78	Distribution of the oscillator strengths in the 2p absorption spectra of 3d transition metal films. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 76-80.	0.6	1
79	Electronic Structure of Fluorinated Carbon Nanotubes Studied by Xâ€ray Absorption and Photoelectron Spectroscopy. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 335-339.	2.1	1
80	Capacitance Transient X-ray Absorption Spectroscopy of semiconducting structures. Superlattices and Microstructures, 2009, 45, 190-199.	3.1	1
81	Local and electronic structure of fluorinated single-walled carbon nanotubes: X-ray absorption and DFT Analysis. Journal of Physics: Conference Series, 2009, 190, 012135.	0.4	1