Michael Turelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750117/publications.pdf

Version: 2024-02-01

78 papers

13,033 citations

41344 49 h-index 78 g-index

82 all docs 82 docs citations

82 times ranked 9598 citing authors

#	Article	IF	CITATIONS
1	Why did theÂ <i>Wolbachia</i> Âtransinfection cross the road? drift, deterministic dynamics, and disease control. Evolution Letters, 2022, 6, 92-105.	3.3	6
2	A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Molecular Phylogenetics and Evolution, 2021, 158, 107061.	2.7	19
3	ENMTools 1.0: an R package for comparative ecological biogeography. Ecography, 2021, 44, 504-511.	4.5	166
4	<i>Wolbachia</i> Acquisition by <i>Drosophila yakuba</i> Clade Hosts and Transfer of Incompatibility Loci Between Distantly Related <i>Wolbachia</i> Genetics, 2019, 212, 1399-1419.	2.9	62
5	Quantitative methods for assessing local and bodywide contributions to Wolbachia titer in maternal germline cells of Drosophila. BMC Microbiology, 2019, 19, 206.	3.3	28
6	Evolutionary Ecology of <i>Wolbachia</i> Releases for Disease Control. Annual Review of Genetics, 2019, 53, 93-116.	7.6	123
7	Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low <i>Wolbachia</i> frequencies in <i>Drosophila mauritiana</i> Evolution; International Journal of Organic Evolution, 2019, 73, 1278-1295.	2.3	63
8	Revisiting a Key Innovation in Evolutionary Biology: Felsenstein's "Phylogenies and the Comparative Method― American Naturalist, 2019, 193, 755-772.	2.1	44
9	Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila. Current Biology, 2018, 28, 963-971.e8.	3.9	127
10	Deploying dengue-suppressing Wolbachia: Robust models predict slow but effective spatial spread in Aedes aegypti. Theoretical Population Biology, 2017, 115, 45-60.	1.1	71
11	Wolbachia in the <i>Drosophila yakuba</i> Complex: Pervasive Frequency Variation and Weak Cytoplasmic Incompatibility, but No Apparent Effect on Reproductive Isolation. Genetics, 2017, 205, 333-351.	2.9	75
12	Commentary: Fisher's infinitesimal model: A story for the ages. Theoretical Population Biology, 2017, 118, 46-49.	1.1	49
13	Genome comparisons indicate recent transfer of <scp><i>w</i>R</scp> iâ€like <i>Wolbachia</i> between sister species <i>Drosophila suzukii</i> and <i>D.Âsubpulchrella</i> . Ecology and Evolution, 2017, 7, 9391-9404.	1.9	49
14	Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biology, 2017, 15, e2001894.	5.6	202
15	Edward East on the Mendelian Basis of Quantitative Trait Variation. Genetics, 2016, 204, 1321-1323.	2.9	1
16	Persistence of a <i>Wolbachia</i> infection frequency cline in <i>Drosophila melanogaster</i> and the possible role of reproductive dormancy. Evolution; International Journal of Organic Evolution, 2016, 70, 979-997.	2.3	99
17	Strange Little Flies in the Big City: Exotic Flower-Breeding Drosophilidae (Diptera) in Urban Los Angeles. PLoS ONE, 2015, 10, e0122575.	2.5	12
18	Comment on "The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus <i>Nasonia</i> ― Science, 2014, 345, 1011-1011.	12.6	22

#	Article	IF	CITATIONS
19	ON THE COYNE AND ORR-IGIN OF SPECIES: EFFECTS OF INTRINSIC POSTZYGOTIC ISOLATION, ECOLOGICAL DIFFERENTIATION, X CHROMOSOME SIZE, AND SYMPATRY ON (i) DROSOPHILA (i) SPECIATION. Evolution; International Journal of Organic Evolution, 2014, 68, 1176-1187.	2.3	53
20	<i>Wolbachia</i> do not live by reproductive manipulation alone: infection polymorphism in <i>Drosophila suzukii</i> and <i>D. subpulchrella</i> . Molecular Ecology, 2014, 23, 4871-4885.	3.9	109
21	Explaining Darwin's Corollary to Haldane's Rule: The Role of Mitonuclear Interactions in Asymmetric Postzygotic Isolation Among Toads. Genetics, 2014, 197, 743-747.	2.9	33
22	Rapid Sequential Spread of Two Wolbachia Variants in Drosophila simulans. PLoS Pathogens, 2013, 9, e1003607.	4.7	169
23	Facilitating <i>Wolbachia </i> i>introductions into mosquito populations through insecticide-resistance selection. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130371.	2.6	29
24	Wolbachia versus dengue. Evolution, Medicine and Public Health, 2013, 2013, 197-207.	2.5	84
25	Spatial Waves of Advance with Bistable Dynamics: Cytoplasmic and Genetic Analogues of Allee Effects. American Naturalist, 2011, 178, E48-E75.	2.1	180
26	A Re-Examination of Wolbachia-Induced Cytoplasmic Incompatibility in California Drosophila simulans. PLoS ONE, 2011, 6, e22565.	2.5	45
27	CYTOPLASMIC INCOMPATIBILITY IN POPULATIONS WITH OVERLAPPING GENERATIONS. Evolution; International Journal of Organic Evolution, 2010, 64, 232-241.	2.3	143
28	EVOLUTION OF INCOMPATIBILITY-INDUCING MICROBES IN SUBDIVIDED HOST POPULATIONS. Evolution; International Journal of Organic Evolution, 2009, 63, 432-447.	2.3	37
29	ENVIRONMENTAL NICHE EQUIVALENCY VERSUS CONSERVATISM: QUANTITATIVE APPROACHES TO NICHE EVOLUTION. Evolution; International Journal of Organic Evolution, 2008, 62, 2868-2883.	2.3	1,957
30	Stochastic spread of <i>Wolbachia </i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2769-2776.	2.6	76
31	Accelerated Mitochondrial Evolution and "Darwin's Corollary― Asymmetric Viability of Reciprocal F1 Hybrids in Centrarchid Fishes. Genetics, 2008, 178, 1037-1048.	2.9	106
32	Asymmetric Postmating Isolation: Darwin's Corollary to Haldane's Rule. Genetics, 2007, 176, 1059-1088.	2.9	345
33	From Parasite to Mutualist: Rapid Evolution of Wolbachia in Natural Populations of Drosophila. PLoS Biology, 2007, 5, e114.	5.6	375
34	Prediction of effects of genetic drift on variance components under a general model of epistasis. Theoretical Population Biology, 2006, 70, 56-62.	1.1	23
35	WILL POPULATION BOTTLENECKS AND MULTILOCUS EPISTASIS INCREASE ADDITIVE GENETIC VARIANCE?. Evolution; International Journal of Organic Evolution, 2006, 60, 1763.	2.3	15
36	WILL POPULATION BOTTLENECKS AND MULTILOCUS EPISTASIS INCREASE ADDITIVE GENETIC VARIANCE?. Evolution; International Journal of Organic Evolution, 2006, 60, 1763-1776.	2.3	59

#	Article	IF	CITATIONS
37	THE GEOGRAPHY OF MAMMALIAN SPECIATION: MIXED SIGNALS FROM PHYLOGENIES AND RANGE MAPS. Evolution; International Journal of Organic Evolution, 2006, 60, 601-615.	2.3	161
38	The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution; International Journal of Organic Evolution, 2006, 60, 601-15.	2.3	34
39	Will population bottlenecks and multilocus epistasis increase additive genetic variance?. Evolution; International Journal of Organic Evolution, 2006, 60, 1763-76.	2.3	27
40	Polygenic Variation Maintained by Balancing Selection: Pleiotropy, Sex-Dependent Allelic Effects and G $ ilde{A}-$ E Interactions. Genetics, 2004, 166, 1053-1079.	2.9	241
41	EFFECTS OF GENETIC DRIFT ON VARIANCE COMPONENTS UNDER A GENERAL MODEL OF EPISTASIS. Evolution; International Journal of Organic Evolution, 2004, 58, 2111-2132.	2.3	120
42	Polygenic Variation Maintained by Balancing Selection: Pleiotropy, Sex-Dependent Allelic Effects and $\langle i \rangle G \langle i \rangle \tilde{A} - \langle i \rangle E \langle i \rangle$ Interactions. Genetics, 2004, 166, 1053-1079.	2.9	47
43	Theory and speciation. Trends in Ecology and Evolution, 2001, 16, 330-343.	8.7	833
44	THE EVOLUTION OF POSTZYGOTIC ISOLATION: ACCUMULATING DOBZHANSKY-MULLER INCOMPATIBILITIES. Evolution; International Journal of Organic Evolution, 2001, 55, 1085-1094.	2.3	427
45	STABLE TWO-ALLELE POLYMORPHISMS MAINTAINED BY FLUCTUATING FITNESSES AND SEED BANKS: PROTECTING THE BLUES IN LINANTHUS PARRYAE. Evolution; International Journal of Organic Evolution, 2001, 55, 1283-1298.	2.3	95
46	THE EVOLUTION OF POSTZYGOTIC ISOLATION: ACCUMULATING DOBZHANSKY-MULLER INCOMPATIBILITIES. Evolution; International Journal of Organic Evolution, 2001, 55, 1085.	2.3	100
47	IS WRIGHT'S SHIFTING BALANCE PROCESS IMPORTANT IN EVOLUTION?. Evolution; International Journal of Organic Evolution, 2000, 54, 306-317.	2.3	180
48	IS WRIGHT'S SHIFTING BALANCE PROCESS IMPORTANT IN EVOLUTION?. Evolution; International Journal of Organic Evolution, 2000, 54, 306.	2.3	25
49	Dominance, Epistasis and the Genetics of Postzygotic Isolation. Genetics, 2000, 154, 1663-1679.	2.9	391
50	Perspective: A Critique of Sewall Wright's Shifting Balance Theory of Evolution. Evolution; International Journal of Organic Evolution, 1997, 51, 643.	2.3	198
51	PERSPECTIVE: A CRITIQUE OF SEWALL WRIGHT'S SHIFTING BALANCE THEORY OF EVOLUTION. Evolution; International Journal of Organic Evolution, 1997, 51, 643-671.	2.3	486
52	Average Dominance for Polygenes: Drawbacks of Regression Estimates. Genetics, 1997, 147, 1487-1490.	2.9	29
53	Haldane's Rule and X-chromosome Size in Drosophila. Genetics, 1997, 147, 1799-1815.	2.9	83
54	Dominance and H <scp>aldane's</scp> Rule. Genetics, 1996, 143, 613-616.	2.9	55

#	Article	IF	Citations
55	CHANGES IN GENETIC VARIANCES AND COVARIANCES: G WHIZ!. Evolution; International Journal of Organic Evolution, 1995, 49, 1260-1267.	2.3	81
56	Evolution of Incompatibility-Inducing Microbes and Their Hosts. Evolution; International Journal of Organic Evolution, 1994, 48, 1500.	2.3	162
57	EVOLUTION OF INCOMPATIBILITYâ€INDUCING MICROBES AND THEIR HOSTS. Evolution; International Journal of Organic Evolution, 1994, 48, 1500-1513.	2.3	356
58	Peak Shifts Produced by Correlated Response to Selection. Evolution; International Journal of Organic Evolution, 1993, 47, 280.	2.3	37
59	PEAK SHIFTS PRODUCED BY CORRELATED RESPONSE TO SELECTION. Evolution; International Journal of Organic Evolution, 1993, 47, 280-290.	2.3	67
60	Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 1991, 353, 440-442.	27.8	609
61	Dynamics of polygenic characters under selection. Theoretical Population Biology, 1990, 38, 1-57.	1.1	174
62	Effects of starvation and experience on the response of Drosophila to alternative resources. Oecologia, 1988, 77, 497-505.	2.0	12
63	Rate Tests for Selection on Quantitative Characters During Macroevolution and Microevolution. Evolution; International Journal of Organic Evolution, 1988, 42, 1085.	2.3	74
64	Phenotypic Evolution, Constant Covariances, and the Maintenance of Additive Variance. Evolution; International Journal of Organic Evolution, 1988, 42, 1342.	2.3	152
65	RATE TESTS FOR SELECTION ON QUANTITATIVE CHARACTERS DURING MACROEVOLUTION AND MICROEVOLUTION. Evolution; International Journal of Organic Evolution, 1988, 42, 1085-1089.	2.3	144
66	PHENOTYPIC EVOLUTION, CONSTANT COVARIANCES, AND THE MAINTENANCE OF ADDITIVE VARIANCE. Evolution; International Journal of Organic Evolution, 1988, 42, 1342-1347.	2.3	309
67	Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genetical Research, 1987, 49, 157-173.	0.9	268
68	Long-Distance Migration of Drosophila. 2. Presence in Desolate Sites and Dispersal Near a Desert Oasis. American Naturalist, 1987, 129, 847-861.	2.1	64
69	Unidirectional Incompatibility between Populations of Drosophila simulans. Evolution; International Journal of Organic Evolution, 1986, 40, 692.	2.3	147
70	UNIDIRECTIONAL INCOMPATIBILITY BETWEEN POPULATIONS OF <i>DROSOPHILA SIMULANS</i> International Journal of Organic Evolution, 1986, 40, 692-701.	2.3	341
71	Stable Underdominance and the Evolutionary Invasion of Empty Niches. American Naturalist, 1986, 127, 835-850.	2.1	187
72	EFFECTS OF PLEIOTROPY ON PREDICTIONS CONCERNING MUTATION-SELECTION BALANCE FOR POLYGENIC TRAITS. Genetics, 1985, 111, 165-195.	2.9	179

#	Article	lF	CITATIONS
73	Linkage data supporting a mathematical explanation for some empirical CIS-Trans effects. Heredity, 1984, 52, 145-147.	2.6	3
74	Resource choice in orchard populations of Drosophila. Biological Journal of the Linnean Society, 1984, 22, 95-106.	1.6	25
75	Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theoretical Population Biology, 1984, 25, 138-193.	1.1	598
76	SHOULD INDIVIDUAL FITNESS INCREASE WITH HETEROZYGOSITY?. Genetics, 1983, 104, 191-209.	2.9	110
77	Temporally varying selection on multiple alleles: A diffusion analysis. Journal of Mathematical Biology, 1981, 13, 115-129.	1.9	29
78	Random environments and stochastic calculus. Theoretical Population Biology, 1977, 12, 140-178.	1.1	303