Dimitris S Argyropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydrate Polymers, 2022, 278, 118973.	10.2	14
2	Computer Assisted Structure Elucidation (CASE): Current and future perspectives. Magnetic Resonance in Chemistry, 2021, 59, 669-690.	1.9	34
3	Quantitative ³¹ P NMR Analysis of Lignins and Tannins. Journal of Visualized Experiments, 2021, , .	0.3	2
4	3D Photoinduced Spatiotemporal Resolution of Cellulose-Based Hydrogels for Fabrication of Biomedical Devices. ACS Applied Bio Materials, 2020, 3, 5007-5019.	4.6	10
5	A perspective of lignin processing and utilization technologies for composites and plastics with emphasis on technical and market trends. BioResources, 2020, 16, 2084-2115.	1.0	6
6	Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 2019, 14, 2627-2647.	12.0	272
7	Are lignin-derived carbon fibers graphitic enough?. Green Chemistry, 2019, 21, 4253-4265.	9.0	73
8	A facile strategy for photoactive nanocellulose-based antimicrobial materials. Green Chemistry, 2019, 21, 3424-3435.	9.0	49
9	Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment. Industrial Crops and Products, 2019, 133, 241-249.	5.2	54
10	NMReDATA, a standard to report the NMR assignment and parameters of organic compounds. Magnetic Resonance in Chemistry, 2018, 56, 703-715.	1.9	61
11	Ultrasound assisted polyacrylamide grafting on nano-fibrillated cellulose. Carbohydrate Polymers, 2018, 181, 1071-1077.	10.2	32
12	Synthesis and characterization of nano fibrillated cellulose/Cu2O films; micro and nano particle nucleation effects. Carbohydrate Polymers, 2018, 197, 614-622.	10.2	14
13	E-beam irradiation & steam explosion as biomass pretreatment, and the complex role of lignin in substrate recalcitrance. Biomass and Bioenergy, 2017, 103, 21-28.	5.7	34
14	Stable Organic Radicals in Lignin: A Review. ChemSusChem, 2017, 10, 3284-3303.	6.8	64
15	Feedstocks and analysis: general discussion. Faraday Discussions, 2017, 202, 497-519.	3.2	2
16	Bio-based materials: general discussion. Faraday Discussions, 2017, 202, 121-139.	3.2	3
17	Bio-based chemicals: general discussion. Faraday Discussions, 2017, 202, 227-245.	3.2	0
18	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	3.2	0

2

#	Article	IF	CITATIONS
19	On the structure of softwood kraft lignin. Green Chemistry, 2017, 19, 4104-4121.	9.0	368
20	Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Industrial Crops and Products, 2017, 108, 316-326.	5.2	84
21	Macroscopic Behavior of Kraft Lignin Fractions: Melt Stability Considerations for Lignin–Polyethylene Blends. ACS Sustainable Chemistry and Engineering, 2016, 4, 5160-5166.	6.7	53
22	A Perspective on Lignin Refining, Functionalization, and Utilization. ACS Sustainable Chemistry and Engineering, 2016, 4, 5089-5089.	6.7	23
23	Effect of Fatty Acid Esterification on the Thermal Properties of Softwood Kraft Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 5238-5247.	6.7	87
24	Toward Carbon Fibers from Single Component Kraft Lignin Systems: Optimization of Chain Extension Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5230-5237.	6.7	28
25	Ionic Liquid Character of Zinc Chloride Hydrates Define Solvent Characteristics that Afford the Solubility of Cellulose. Journal of Physical Chemistry B, 2016, 120, 1134-1141.	2.6	82
26	Refining of Ethanol Biorefinery Residues to Isolate Value Added Lignins. ACS Sustainable Chemistry and Engineering, 2015, 3, 1632-1641.	6.7	23
27	Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chemistry, 2015, 17, 4862-4887.	9.0	391
28	Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2015, 3, 349-356.	6.7	141
29	Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper. Biomacromolecules, 2015, 16, 2482-2492.	5.4	80
30	Quantitative Study of the Interfacial Adsorption of Cellullase to Cellulose. Journal of Physical Chemistry C, 2015, 119, 14160-14166.	3.1	5
31	Wood Extractives Promote Cellulase Activity on Cellulosic Substrates. Biomacromolecules, 2015, 16, 3226-3234.	5.4	19
32	Methylation of softwood kraft lignin with dimethyl carbonate. Green Chemistry, 2015, 17, 1077-1087.	9.0	76
33	Determination of molecular weight distributions in native and pretreated wood. Carbohydrate Polymers, 2015, 119, 44-52.	10.2	4
34	Synthesis and Characterization of Poly(arylene ether sulfone) Kraft Lignin Heat Stable Copolymers. ACS Sustainable Chemistry and Engineering, 2014, 2, 264-271.	6.7	41
35	Fractional Precipitation of Softwood Kraft Lignin: Isolation of Narrow Fractions Common to a Variety of Lignins. ACS Sustainable Chemistry and Engineering, 2014, 2, 959-968.	6.7	167
36	Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components. Carbohydrate Polymers, 2014, 113, 552-560.	10.2	23

#	Article	IF	CITATIONS
37	Review of Cellulose Non-Derivatizing Solvent Interactions with Emphasis on Activity in Inorganic Molten Salt Hydrates. ACS Sustainable Chemistry and Engineering, 2013, 1, 858-870.	6.7	231
38	Kraft Lignin Chain Extension Chemistry via Propargylation, Oxidative Coupling, and Claisen Rearrangement. Biomacromolecules, 2013, 14, 3399-3408.	5.4	56
39	Fractionation of Lignocellulosic Materials Using Ionic Liquids: Part 2. Effect of Particle Size on the Mechanisms of Fractionation. Industrial & Engineering Chemistry Research, 2013, 52, 3958-3966.	3.7	25
40	Efficient One-Pot Synthesis of 5-Chloromethylfurfural (CMF) from Carbohydrates in Mild Biphasic Systems. Molecules, 2013, 18, 7675-7685.	3.8	22
41	Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 2012, 51, 16713-16720.	3.7	171
42	Accurate and Reproducible Determination of Lignin Molar Mass by Acetobromination. Journal of Agricultural and Food Chemistry, 2012, 60, 8968-8973.	5.2	115
43	Toward Thermoplastic Lignin Polymers; Part II: Thermal & Polymer Characteristics of Kraft Lignin & Derivatives. BioResources, 2012, 8, .	1.0	104
44	Porphyrin ellulose Nanocrystals: A Photobactericidal Material that Exhibits Broad Spectrum Antimicrobial Activity ^{â€} . Photochemistry and Photobiology, 2012, 88, 527-536.	2.5	93
45	Protein Analysis by31P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links. Journal of Agricultural and Food Chemistry, 2011, 59, 1352-1362.	5.2	9
46	Photobactericidal Porphyrin-Cellulose Nanocrystals: Synthesis, Characterization, and Antimicrobial Properties. Biomacromolecules, 2011, 12, 3528-3539.	5.4	210
47	Molecular Weight Distributions and Linkages in Lignocellulosic Materials Derivatized from Ionic Liquid Media. Journal of Agricultural and Food Chemistry, 2011, 59, 829-838.	5.2	57
48	Fractionation of Lignocellulosic Materials with Ionic Liquids. 1. Effect of Mechanical Treatment. Industrial & Engineering Chemistry Research, 2011, 50, 12349-12357.	3.7	30
49	Photoresponsive Cellulose Nanocrystals. Nanomaterials and Nanotechnology, 2011, 1, 7.	3.0	29
50	Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. Journal of Materials Science, 2011, 46, 7344-7355.	3.7	206
51	Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping. Bioorganic and Medicinal Chemistry, 2011, 19, 3022-3028.	3.0	16
52	Heteronuclear NMR Spectroscopy of Lignins. , 2010, , 245-265.		22
53	Characterization of Free Radical Spin Adducts of 5-Diisopropyloxy-Phosphoryl-5-Methyl-1-Pyrroline-N-Oxide Using Mass Spectrometry and 31P Nuclear Magnetic Resonance. European Journal of Mass Spectrometry, 2010, 16, 175-185.	1.0	13
54	Regular Linking of Cellulose Nanocrystals via Click Chemistry: Synthesis and Formation of Cellulose Nanoplatelet Gels. Biomacromolecules, 2010, 11, 1060-1066.	5.4	179

DIMITRIS S ARGYROPOULOS

#	Article	IF	CITATIONS
55	Factors Affecting Wood Dissolution and Regeneration of Ionic Liquids. Industrial & Engineering Chemistry Research, 2010, 49, 2477-2484.	3.7	155
56	Acidolysis of Wood in Ionic Liquids. Industrial & Engineering Chemistry Research, 2010, 49, 3126-3136.	3.7	61
57	Monitoring Cellulase Protein Adsorption and Recovery Using SDS-PAGE. Industrial & Engineering Chemistry Research, 2010, 49, 8333-8338.	3.7	29
58	Opportunities with Wood Dissolved in Ionic Liquids. ACS Symposium Series, 2010, , 343-363.	0.5	1
59	A new method for rapid degree of substitution and purity determination of chloroform-soluble cellulose esters, using 31P NMR. Analytical Methods, 2010, 2, 1499.	2.7	50
60	Highly compatible wood thermoplastic composites from lignocellulosic material modified in ionic liquids: Preparation and thermal properties. Journal of Applied Polymer Science, 2009, 111, 2468-2476.	2.6	36
61	Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydrate Polymers, 2009, 77, 851-857.	10.2	184
62	Phenoxy radical detection using ³¹ P NMR spin trapping. Journal of Physical Organic Chemistry, 2009, 22, 1070-1077.	1.9	21
63	Detection of ketyl radicals using 31P NMR spin trapping. Journal of Physical Organic Chemistry, 2009, 23, 505-512.	1.9	13
64	Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering and Science, 2009, 49, 2054-2061.	3.1	91
65	Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel, 2009, 88, 560-565.	6.4	182
66	Structure of the Polyphenolic Component of Suberin Isolated from Potato (Solanum tuberosum var.) Tj ETQq0 0	0	verlgck 10 Tf
67	Hydrophobic Interactions Determining Functionalized Lignocellulose Solubility in Dialkylimidazolium Chlorides, as Probed by ³¹ P NMR. Biomacromolecules, 2009, 10, 458-463.	5.4	38
68	In Situ Determination of Lignin Phenolics and Wood Solubility in Imidazolium Chlorides Using ³¹ P NMR. Journal of Agricultural and Food Chemistry, 2009, 57, 8236-8243.	5.2	72
69	Antihypertensive Drug Valsartan in Solution and at the AT ₁ Receptor: Conformational Analysis, Dynamic NMR Spectroscopy, <i>in Silico</i> Docking, and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2009, 49, 726-739.	5.4	39
70	Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose, 2008, 15, 481-488.	4.9	76
71	Understanding the pyrolysis of CCA-treated wood. Journal of Analytical and Applied Pyrolysis, 2008, 81, 60-64.	5.5	41
72	Understanding the pyrolysis of CCA-treated wood. Journal of Analytical and Applied Pyrolysis, 2008, 82, 140-144.	5.5	22

#	Article	IF	CITATIONS
73	Solubilizing amino acids and polypeptides in supercritical CO2 via reverse micelle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315, 110-116.	4.7	3
74	Determination of Cellulose Reactivity by Using Phosphitylation and Quantitative ³¹ P NMR Spectroscopy. Industrial & Engineering Chemistry Research, 2008, 47, 8906-8910.	3.7	28
75	Propensity of Lignin to Associate: Light Scattering Photometry Study with Native Lignins. Biomacromolecules, 2008, 9, 3362-3369.	5.4	88
76	Microwave-Assisted Lignin Isolation Using the Enzymatic Mild Acidolysis (EMAL) Protocol. Journal of Agricultural and Food Chemistry, 2008, 56, 10115-10122.	5.2	25
77	Determination of Arylglycerolâ^'î²-Aryl Ether Linkages in Enzymatic Mild Acidolysis Lignins (EMAL): Comparison of DFRC/31P NMR with Thioacidolysis⊥. Journal of Natural Products, 2008, 71, 836-841.	3.0	26
78	lsolation and characterization of lignins from <i>Eucalyptus grandis</i> Hill ex Maiden and <i>Eucalyptus globulus</i> Labill. by enzymatic mild acidolysis (EMAL). Holzforschung, 2008, 62, 24-30.	1.9	49
79	Modifying the Functionality of Starch Films with Natural Polymers. ACS Symposium Series, 2007, , 200-218.	0.5	3
80	Measurement of Cellulase Activity with Piezoelectric Resonators. ACS Symposium Series, 2007, , 478-494.	0.5	15
81	Thorough Chemical Modification of Wood-Based Lignocellulosic Materials in Ionic Liquids. Biomacromolecules, 2007, 8, 3740-3748.	5.4	183
82	Spectral Characterization of Eucalyptus Wood. Applied Spectroscopy, 2007, 61, 1168-1177.	2.2	249
83	Chemicals, Materials, and Energy from Biomass: A Review. ACS Symposium Series, 2007, , 2-30.	0.5	14
84	Oxidative Chemistry of Lignin in Supercritical Carbon Dioxide and Expanded Liquids. ACS Symposium Series, 2007, , 311-331.	0.5	1
85	An Efficient and Stereoselective Dearylation of Asarinin and Sesamin Tetrahydrofurofuran Lignans to Acuminatolide by Methyltrioxorhenium/H2O2 and UHP Systems. Journal of Natural Products, 2007, 70, 39-42.	3.0	14
86	Products and Functional Group Distributions in Pyrolysis Oil of Chromated Copper Arsenate (CCA)-Treated Wood, as Elucidated by Gas Chromatography and a Novel ³¹ P NMR-Based Method. Industrial & Engineering Chemistry Research, 2007, 46, 5258-5264.	3.7	24
87	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 33-40.	4.7	10
88	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 23-32.	4.7	22
89	A simple method to tune the gross antibacterial activity of cellulosic biomaterials. Carbohydrate Polymers, 2007, 69, 805-810.	10.2	14
90	On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species. Phytochemistry, 2007, 68, 2570-2583.	2.9	88

#	Article	IF	CITATIONS
91	Lignins as Emulsion Stabilizers. ACS Symposium Series, 2007, , 182-199.	0.5	30
92	Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry, 2007, 55, 9142-9148.	5.2	850
93	Toward a Better Understanding of the Lignin Isolation Process from Wood. Journal of Agricultural and Food Chemistry, 2006, 54, 5939-5947.	5.2	208
94	Spectral Monitoring of the Formation and Degradation of Polysulfide Ions in Alkaline Conditions. Industrial & Engineering Chemistry Research, 2006, 45, 7388-7392.	3.7	24
95	Comparative Evaluation of Three Lignin Isolation Protocols for Various Wood Species. Journal of Agricultural and Food Chemistry, 2006, 54, 9696-9705.	5.2	205
96	Influence of Natural Biomaterials on the Elastic Properties of Starch-Derived Films:Â An Optimization Study. Industrial & Engineering Chemistry Research, 2006, 45, 627-633.	3.7	17
97	Chemicals and energy from biomass. Canadian Journal of Chemistry, 2006, 84, 960-970.	1.1	73
98	Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorganic and Medicinal Chemistry, 2006, 14, 5292-5302.	3.0	127
99	Colloidal effects of acrylamide polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 74-81.	4.7	13
100	Colloidal effects of acrylamide polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 89-95.	4.7	18
101	Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species. Bioorganic and Medicinal Chemistry, 2006, 14, 4017-4028.	3.0	38
102	Improving the physical and chemical functionality of starch-derived films with biopolymers. Journal of Applied Polymer Science, 2006, 100, 2542-2548.	2.6	40
103	Aspects of retention and formation. Nordic Pulp and Paper Research Journal, 2006, 21, 638-645.	0.7	9
104	Development of the partial least squares models for the interpretation of the UV resonance Raman spectra of lignin model compounds. Vibrational Spectroscopy, 2005, 37, 111-121.	2.2	42
105	Quantitative 1H NMR analysis of alkaline polysulfide solutions. Holzforschung, 2005, 59, 124-131.	1.9	21
106	Molecular weight-functional group relations in softwood residual kraft lignins. Holzforschung, 2005, 59, 612-619.	1.9	25
107	Dependency of polyelectrolyte complex stoichiometry on the order of addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 71-79.	4.7	7
108	Nitrogen-Centered Activators of Peroxide-Reinforced Oxygen Delignification. Industrial & Engineering Chemistry Research, 2004, 43, 1200-1205.	3.7	12

#	Article	IF	CITATIONS
109	Dependency of polyelectrolyte complex stoichiometry on the order of addition2. Aluminum chloride and poly-vinylsulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 71-79.	4.7	9
110	The effect of isolation method on the chemical structure of residual lignin. Wood Science and Technology, 2003, 37, 91-102.	3.2	116
111	On the Mechanism of the Laccase–Mediator System in the Oxidation of Lignin. Chemistry - A European Journal, 2003, 9, 5371-5378.	3.3	81
112	Abundance and Reactivity of Dibenzodioxocins in Softwood Lignin. Journal of Agricultural and Food Chemistry, 2002, 50, 658-666.	5.2	75
113	Quantitative13C NMR Analysis of Lignins with Internal Standards. Journal of Agricultural and Food Chemistry, 2001, 49, 3573-3578.	5.2	106
114	Catalysis and Activation of Oxygen and Peroxide Delignification of Chemical Pulps: A Review. ACS Symposium Series, 2001, , 2-43.	0.5	38
115	A Detailed Study of the Alkaline Oxidative Degradation of a Residual Kraft Lignin Model Compound. ACS Symposium Series, 2001, , 130-148.	0.5	0
116	Quantitative 31P NMR Spectroscopy of Lignins from Transgenic Poplars. Holzforschung, 2001, 55, 386-390.	1.9	43
117	Determination of Arylglycerol-β-aryl Ethers and Other Linkages in Lignins Using DFRC/31P NMR. Journal of Agricultural and Food Chemistry, 2001, 49, 536-542.	5.2	64
118	Alkaline oxidative degradation of diphenylmethane structures — Activation energy and computational analysis of the reaction mechanism. Canadian Journal of Chemistry, 2001, 79, 1394-1401.	1.1	2
119	On the Role of 1-Hydroxybenzotriazole as Mediator in Laccase Oxidation of Residual Kraft Lignin. ACS Symposium Series, 2001, , 373-390.	0.5	4
120	Factors limiting oxygen delignification of kraft pulp. Canadian Journal of Chemistry, 2001, 79, 201-210.	1.1	41
121	Photostabilizing Milled Wood Lignin with Benzotriazoles and Hindered Nitroxideâ€Â¶. Photochemistry and Photobiology, 2001, 73, 605-610.	2.5	1
122	Factors limiting o×ygen delignification of kraft pulp. Canadian Journal of Chemistry, 2001, 79, 201-210.	1.1	32
123	Alkaline oxidative degradation of diphenylmethane structures — Activation energy and computational analysis of the reaction mechanism. Canadian Journal of Chemistry, 2001, 79, 1394-1401.	1.1	3
124	Photostabilizing Milled Wood Lignin with Benzotriazoles and Hindered Nitroxideâ€Â¶. Photochemistry and Photobiology, 2001, 73, 605.	2.5	9
125	Photoyellowing Inhibition of Bleached High Yield Pulps Using Novel Water-Soluble UV Screens. Photochemistry and Photobiology, 2000, 71, 141-148.	2.5	7
126	On the Interaction of UV Screens with the Lignocellulosic Matrix. Photochemistry and Photobiology, 2000, 71, 149-156.	2.5	1

#	Article	IF	CITATIONS
127	On the Interaction of UV Screens with the Lignocellulosic Matrix. Photochemistry and Photobiology, 2000, 71, 149.	2.5	5
128	Proton spin–lattice relaxation time measurements of solid wood and its constituents as a function of pH: Part II. Solid State Nuclear Magnetic Resonance, 1999, 15, 49-57.	2.3	8
129	A Comparison of the Structural Changes Occurring in Lignin during Alcell and Kraft Pulping of Hardwoods and Softwoods. ACS Symposium Series, 1999, , 447-464.	0.5	9
130	The effect of metal ions on the reaction of hydrogen peroxide with Kraft lignin model compounds. Canadian Journal of Chemistry, 1999, 77, 667-675.	1.1	34
131	19F Nuclear Magnetic Resonance Spectroscopy for the Quantitative Detection and Classification of Carbonyl Groups in Lignins. Journal of Agricultural and Food Chemistry, 1999, 47, 190-201.	5.2	36
132	The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorganic and Medicinal Chemistry, 1998, 6, 2161-2169.	3.0	127
133	Structural modifications induced during biodegradation of wheat lignin by Lentinula edodes. Bioorganic and Medicinal Chemistry, 1998, 6, 967-973.	3.0	42
134	On the formation of diphenylmethane structures in lignin under kraft, EMCC [®] , and soda pulping conditions. Canadian Journal of Chemistry, 1998, 76, 506-512.	1.1	26
135	Semiquantitative Determination of Quinonoid Structures in Isolated Lignins by31P Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry, 1998, 46, 4628-4634.	5.2	21
136	Maintaining the Brightness of Mechanical Pulps with Solid-State Perborate Bleaching. Holzforschung, 1998, 52, 319-324.	1.9	1
137	Fundamentals of o×ygen delignification. Part II. Functional group formation/elimination in residual kraft lignin. Canadian Journal of Chemistry, 1998, 76, 1606-1615.	1.1	41
138	Coupling P-31 NMR with the Mannich reaction for the quantitative analysis of lignin. Canadian Journal of Chemistry, 1998, 76, 612-622.	1.1	13
139	A Study of Poly(hydroxyalkanoate)s by Quantitative 31P NMR Spectroscopy:  Molecular Weight and Chain Cleavage. Macromolecules, 1997, 30, 327-329.	4.8	54
140	Structural Analysis of Wheat Straw Lignin by Quantitative31P and 2D NMR Spectroscopy. The Occurrence of Ester Bonds and α-O-4 Substructures. Journal of Agricultural and Food Chemistry, 1997, 45, 1212-1219.	5.2	224
141	Thermodynamic parameters governing the stereoselective degradation of arylglycerol-B-aryl ether bonds in milled wood lignin under kraft pulping conditions. Nordic Pulp and Paper Research Journal, 1997, 12, 282-288.	0.7	12
142	Lignin. Advances in Biochemical Engineering/Biotechnology, 1997, , 127-158.	1.1	34
143	19F Nuclear Magnetic Resonance Spectroscopy for the Elucidation of Carbonyl Groups in Lignins. 1. Model Compounds. Journal of Agricultural and Food Chemistry, 1996, 44, 2167-2175.	5.2	20
144	Photochemically Induced Solid‣tate Degradation, Condensation, and Rearrangement Reactions in Lignin Model Compounds and Milled Wood Lignin. Photochemistry and Photobiology, 1996, 64, 510-517.	2.5	40

#	Article	IF	CITATIONS
145	A comparison of lignin polymer models (DHPs) and lignins by 31P NMR spectroscopy. Phytochemistry, 1996, 43, 499-507.	2.9	72
146	A Comparison of the Reactivity and Efficiency of Ozone, Chlorine Dioxide, Dimethyldioxirane and Hydrogen Peroxide with Residual Kraft Lignin. Holzforschung, 1996, 50, 175-182.	1.9	31
147	Correlation analysis of31P NMR chemical shifts with substituent effects of phenols. Magnetic Resonance in Chemistry, 1995, 33, 375-382.	1.9	88
148	Observation of quinonoid groups during the light-induced yellowing of softwood mechanical pulp. Research on Chemical Intermediates, 1995, 21, 263-274.	2.7	35
149	31P NMR in wood chemistry: A review of recent progress. Research on Chemical Intermediates, 1995, 21, 373-395.	2.7	135
150	Milox pulping: Lignin characterization by 31P NMR spectroscopy and oxidative degradation. Nordic Pulp and Paper Research Journal, 1995, 10, 68-73.	0.7	11
151	Magnetic Field and Temperature Effects on the Solid State Proton Spin-Lattice Relaxation Time Measurements of Wood and Pulps. Holzforschung, 1995, 49, 115-118.	1.9	7
152	2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. Journal of Agricultural and Food Chemistry, 1995, 43, 1538-1544.	5.2	714
153	31P NMR Spectroscopy in Wood Chemistry. Part VI. Solid State31P NMR of Trimethyl Phosphite Derivatives of Chromophores and Carboxylic Acids Present in Mechanical Pulps; a Method for the Quantitative Determination ofortho-Quinones. Holzforschung, 1994, 48, 112-116.	1.9	21
154	Quantitative Phosphorus-31 NMR Analysis of Six Soluble Lignins. Journal of Wood Chemistry and Technology, 1994, 14, 65-82.	1.7	73
155	Determination of Hydroxyl Groups in Lignins Evaluation of ¹ H-, ¹³ C-, ³¹ P-NMR, FTIR and Wet Chemical Methods. Holzforschung, 1994, 48, 387-394.	1.9	122
156	Quantitative Phosphorus-31 NMR Analysis of Lignins, a New Tool for the Lignin Chemist. Journal of Wood Chemistry and Technology, 1994, 14, 45-63.	1.7	232
157	31P NMR Spectroscopy in Wood Chemistry Part V. Qualitative Analysis of Lignin Functional Groups. Journal of Wood Chemistry and Technology, 1993, 13, 187-212.	1.7	43
158	31P NMR Spectroscopy in Wood Chemistry. Part IV. Lignin Models: Spin Lattice Relaxation Times and Solvent Effects in31P NMR. Holzforschung, 1993, 47, 50-56.	1.9	24
159	P NMR Spectroscopy in Wood Chemistry - Part III. Solid State31P NMR of Trimethyl Phosphite Derivatives of Chromophores in Mechanical Pulp. Holzforschung, 1992, 46, 211-218.	1.9	19
160	31P-N.m.r. spectroscopy in wood chemistry. Phosphite derivatives of carbohydrates. Carbohydrate Research, 1991, 220, 49-61.	2.3	33
161	³¹ P NMR Spectroscopy in Wood Chemistry. I. Model Compounds. Journal of Wood Chemistry and Technology, 1991, 11, 137-157.	1.7	48
162	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 607-618.	1.1	11

DIMITRIS S ARGYROPOULOS

#	Article	IF	CITATIONS
163	Species distribution within the soluble phase beyond the gel point. Macromolecules, 1987, 20, 357-361.	4.8	17
164	Condensation of Lignin in Dioxane-Water-HCl. Journal of Wood Chemistry and Technology, 1987, 7, 1-23.	1.7	19
165	The Gel Degradation Theory. Part III. An Experimental Kinetic Verification. Journal of Wood Chemistry and Technology, 1987, 7, 499-511.	1.7	9
166	Gel degradation theory. 1. An experimental verification with a model trifunctional network. Macromolecules, 1987, 20, 2915-2922.	4.8	28
167	Polymerization beyond the gel point. I. The molecular weight of sol as a function of the extent of reaction. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 1191-1202.	2.1	9
168	Title is missing!. Die Makromolekulare Chemie, 1987, 188, 1985-1992.	1.1	13
169	Characterization of the soluble phase beyond the gel point. Macromolecules, 1986, 19, 3001-3003.	4.8	7
170	Kinetics of gelation in model polycondensates. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 578-582.	0.5	6
171	A facile synthesis of monodisperse carboxylated polystyrene and derivatives. Die Makromolekulare Chemie, 1986, 187, 1887-1894.	1.1	9