Philip D Kiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of the Retinoid (Visual) Cycle. Chemical Reviews, 2014, 114, 194-232.	47.7	285
2	Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 137-151.	2.4	141
3	Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17325-17330.	7.1	140
4	Structural basis of carotenoid cleavage: From bacteria to mammals. Archives of Biochemistry and Biophysics, 2013, 539, 203-213.	3.0	119
5	The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends in Biochemical Sciences, 2010, 35, 400-410.	7.5	105
6	Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nature Biomedical Engineering, 2021, 5, 169-178.	22.5	90
7	Metabolic Basis of Visual Cycle Inhibition by Retinoid and Nonretinoid Compounds in the Vertebrate Retina. Journal of Biological Chemistry, 2008, 283, 9543-9554.	3.4	85
8	Retinoids and Retinal Diseases. Annual Review of Vision Science, 2016, 2, 197-234.	4.4	85
9	Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nature Chemical Biology, 2015, 11, 409-415.	8.0	66
10	Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nature Communications, 2018, 9, 1996.	12.8	65
11	Characterization of the Role of β-Carotene 9,10-Dioxygenase in Macular Pigment Metabolism. Journal of Biological Chemistry, 2015, 290, 24844-24857.	3.4	59
12	Molecular pharmacodynamics of emixustat in protection against retinal degeneration. Journal of Clinical Investigation, 2015, 125, 2781-2794.	8.2	59
13	Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2747-56.	7.1	58
14	Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity. Journal of Biological Chemistry, 2010, 285, 9667-9682.	3.4	57
15	Membrane-binding and enzymatic properties of RPE65. Progress in Retinal and Eye Research, 2010, 29, 428-442.	15.5	55
16	The Biochemical Basis of Vitamin A Production from the Asymmetric Carotenoid β-Cryptoxanthin. ACS Chemical Biology, 2018, 13, 2121-2129.	3.4	52
17	Shedding new light on the generation of the visual chromophore. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19629-19638.	7.1	51
18	LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nature Chemical Biology, 2015, 11, 26-32.	8.0	49

PHILIP D KISER

#	Article	IF	CITATIONS
19	Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. Journal of Biological Chemistry, 2015, 290, 30212-30223.	3.4	48
20	Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures. Journal of Biological Chemistry, 2016, 291, 8528-8540.	3.4	41
21	Eyes on systems pharmacology. Pharmacological Research, 2016, 114, 39-41.	7.1	39
22	Retinal pigment epithelium 65ÂkDa protein (RPE65): An update. Progress in Retinal and Eye Research, 2022, 88, 101013.	15.5	36
23	Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration. Science Signaling, 2016, 9, ra74.	3.6	33
24	Photic generation of 11-cis-retinal in bovine retinal pigment epithelium. Journal of Biological Chemistry, 2019, 294, 19137-19154.	3.4	33
25	Genetic Basis of De Novo Appearance of Carotenoid Ornamentation in Bare Parts of Canaries. Molecular Biology and Evolution, 2020, 37, 1317-1328.	8.9	30
26	Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158590.	2.4	29
27	Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proceedings of the United States of America, 2017, 114, E2608-E2615.	7.1	28
28	Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. Journal of General Physiology, 2018, 150, 571-590.	1.9	28
29	Analysis of Carotenoid Isomerase Activity in a Prototypical Carotenoid Cleavage Enzyme, Apocarotenoid Oxygenase (ACO). Journal of Biological Chemistry, 2014, 289, 12286-12299.	3.4	27
30	The Biochemical Basis of Vitamin A ₃ Production in Arthropod Vision. ACS Chemical Biology, 2016, 11, 1049-1057.	3.4	27
31	Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. Journal of Biological Chemistry, 2021, 296, 100072.	3.4	27
32	Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65. Human Molecular Genetics, 2018, 27, 2225-2243.	2.9	26
33	Key Residues for Catalytic Function and Metal Coordination in a Carotenoid Cleavage Dioxygenase. Journal of Biological Chemistry, 2016, 291, 19401-19412.	3.4	25
34	The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. Journal of Biological Chemistry, 2020, 295, 15553-15565.	3.4	25
35	Structure and Spectroscopy of Alkene-Cleaving Dioxygenases Containing an Atypically Coordinated Non-Heme Iron Center. Biochemistry, 2017, 56, 2836-2852.	2.5	23
36	Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. Journal of Cell Biology, 2021, 220, .	5.2	23

PHILIP D KISER

#	Article	IF	CITATIONS
37	Conditional deletion of <i>Des1</i> in the mouse retina does not impair the visual cycle in cones. FASEB Journal, 2019, 33, 5782-5792.	0.5	22
38	Involvement of Endoplasmic Reticulum Stress in TULP1 Induced Retinal Degeneration. PLoS ONE, 2016, 11, e0151806.	2.5	22
39	Inhibition of the histone demethylase, KDM5B, directly induces re-expression of tumor suppressor protein HEXIM1 in cancer cells. Breast Cancer Research, 2019, 21, 138.	5.0	20
40	A Combination of G Protein–Coupled Receptor Modulators Protects Photoreceptors from Degeneration. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 207-220.	2.5	20
41	Rational Tuning of Visual Cycle Modulator Pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 131-145.	2.5	19
42	Structural biology of 11- <i>cis-</i> retinaldehyde production in the classical visual cycle. Biochemical Journal, 2018, 475, 3171-3188.	3.7	18
43	Abnormal Cannabidiol Modulates Vitamin A Metabolism by Acting as a Competitive Inhibitor of CRBP1. ACS Chemical Biology, 2019, 14, 434-448.	3.4	18
44	Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19914-19925.	7.1	17
45	The Structural and Biochemical Basis of Apocarotenoid Processing by β-Carotene Oxygenase-2. ACS Chemical Biology, 2021, 16, 480-490.	3.4	17
46	Enzyme That Makes You Cry–Crystal Structure of Lachrymatory Factor Synthase from <i>Allium cepa</i> . ACS Chemical Biology, 2017, 12, 2296-2304.	3.4	16
47	Purification, crystallization and structure determination of native GroEL fromEscherichia colilacking bound potassium ions. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 457-461.	0.7	15
48	Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. Journal of Medicinal Chemistry, 2021, 64, 8287-8302.	6.4	12
49	Structure of 3-mercaptopropionic acid dioxygenase with a substrate analog reveals bidentate substrate binding at the iron center. Journal of Biological Chemistry, 2021, 296, 100492.	3.4	12
50	Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure, 2022, 30, 263-277.e5.	3.3	12
51	Identification and Characterization of Novel Inhibitors of Mammalian Aspartyl Aminopeptidase. Molecular Pharmacology, 2014, 86, 231-242.	2.3	11
52	Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. Journal of Biological Inorganic Chemistry, 2018, 23, 887-901.	2.6	10
53	An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight, 2021, 6, .	5.0	10
54	Reappraisal of dioxygen binding in NOV1 crystal structures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6027-E6028.	7.1	9

PHILIP D KISER

#	Article	IF	CITATIONS
55	Function of mammalian M-cones depends on the level of CRALBP in Müller cells. Journal of General Physiology, 2021, 153, .	1.9	9
56	Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases. Journal of Biological Chemistry, 2019, 294, 10596-10606.	3.4	6
57	A large animal model of <i>RDH5</i> -associated retinopathy recapitulates important features of the human phenotype. Human Molecular Genetics, 2022, 31, 1263-1277.	2.9	4