Nam-Soon Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7747446/publications.pdf

Version: 2024-02-01

137	16,666	60	128
papers	citations	h-index	g-index
152	152	152	15128
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Challenges Facing Lithium Batteries and Electrical Doubleâ€Layer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	13.8	2,407
2	Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Advanced Energy Materials, 2011, 1, 34-50.	19.5	1,906
3	An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Advanced Materials, 2013, 25, 3045-3049.	21.0	770
4	Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy and Environmental Science, 2013, 6, 2067.	30.8	712
5	A Highly Crossâ€Linked Polymeric Binder for Highâ€Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie - International Edition, 2012, 51, 8762-8767.	13.8	636
6	Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources, 2006, 161, 1254-1259.	7.8	554
7	Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries. Advanced Materials, 2012, 24, 3562-3567.	21.0	448
8	Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4063-4073.	8.0	398
9	Tin Phosphide as a Promising Anode Material for Naâ€lon Batteries. Advanced Materials, 2014, 26, 4139-4144.	21.0	356
10	Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Advances, 2015, 5, 2732-2748.	3.6	252
11	Electrochemical performance of lithium/sulfur batteries with protected Li anodes. Journal of Power Sources, 2003, 119-121, 964-972.	7.8	202
12	One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials. Journal of Materials Chemistry, 2011, 21, 9825.	6.7	200
13	A multifunctional phosphite-containing electrolyte for 5 V-class LiNi $<$ sub $>$ 0.5 $<$ /sub $>$ Mn $<$ sub $>$ 1.5 $<$ /sub $>$ O $<$ sub $>$ 4 $<$ /sub $>$ cathodes with superior electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 9506-9513.	10.3	185
14	Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. ACS Applied Materials & Sodium Metal Batteries. ACS Applied Materials & Sodium Metal Batteries.	8.0	177
15	Scavenging Materials to Stabilize LiPF ₆ â€Containing Carbonateâ€Based Electrolytes for Liâ€lon Batteries. Advanced Materials, 2019, 31, e1804822.	21.0	175
16	Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. Journal of Power Sources, 2005, 139, 235-241.	7.8	174
17	Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges. ACS Energy Letters, 2020, 5, 1537-1553.	17.4	169
18	Na _{4â€Î±} M _{2+α/2} (P ₂ O ₇) ₂ (2/3 ≼± â‰♬/8, Advanced Energy Materials, 2013, 3, 770-776.	M = Fe,) T	j ETQq0 0 0 rş 155

Advanced Energy Materials, 2013, 3, 770-776.

#	Article	IF	Citations
19	Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1552-1562.	30.8	154
20	Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. Journal of Power Sources, 2013, 227, 177-184.	7.8	153
21	Understanding the thermal instability of fluoroethylene carbonate in LiPF 6 -based electrolytes for lithium ion batteries. Electrochimica Acta, 2017, 225, 358-368.	5.2	153
22	High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy and Environmental Science, 2015, 8, 2075-2084.	30.8	146
23	Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochimica Acta, 2009, 54, 4445-4450.	5.2	144
24	Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. Journal of Power Sources, 2008, 177, 590-594.	7.8	143
25	Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of the Electrochemical Society, 2012, 159, A1308-A1314.	2.9	141
26	Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes. ACS Applied Materials & Encountry Interfaces, 2018, 10, 15270-15280.	8.0	133
27	SnSe alloy as a promising anode material for Na-ion batteries. Chemical Communications, 2015, 51, 50-53.	4.1	129
28	Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. Journal of Power Sources, 2017, 357, 97-106.	7.8	127
29	Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 20771-20779.	10.3	123
30	Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nature Communications, 2021, 12, 838.	12.8	122
31	Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8319-8329.	8.0	121
32	Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nature Communications, 2018, 9, 3285.	12.8	119
33	Siâ€Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 206-212.	19.5	113
34	An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. Journal of Power Sources, 2020, 446, 227366.	7.8	113
35	Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte. Journal of Power Sources, 2007, 172, 404-409.	7.8	109
36	Using a lithium bis(oxalato) borate additive to improve electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathodes at 60°C. Electrochimica Acta, 2013, 104, 170-177.	5.2	106

#	Article	IF	Citations
37	Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes. Journal of Power Sources, 2016, 302, 22-30.	7.8	106
38	Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energy and Environmental Science, 2012, 5, 7878.	30.8	103
39	Fluorine-incorporated interface enhances cycling stability of lithium metal batteries with Ni-rich NCM cathodes. Nano Energy, 2020, 67, 104309.	16.0	101
40	Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC). Electrochimica Acta, 2004, 50, 583-588.	5.2	100
41	New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochimica Acta, 2001, 46, 1453-1459.	5.2	97
42	Chemicalâ€Assisted Thermal Disproportionation of Porous Silicon Monoxide into Siliconâ€Based Multicomponent Systems. Angewandte Chemie - International Edition, 2012, 51, 2767-2771.	13.8	95
43	Roomâ€Temperature Crosslinkable Natural Polymer Binder for Highâ€Rate and Stable Silicon Anodes. Advanced Functional Materials, 2020, 30, 1908433.	14.9	95
44	Morphology and hydrolysis of PCL/PLLA blends compatibilized with P(LLA-co-?CL) or P(LLA-b-?CL). Journal of Applied Polymer Science, 2002, 86, 1892-1898.	2.6	92
45	Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. Journal of Power Sources, 2016, 320, 49-58.	7.8	91
46	Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2000012.	19.5	91
47	Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C. Electrochemical and Solid-State Letters, 2010, 13, A168.	2.2	88
48	Optimization of Carbon―and Binderâ€Free Au Nanoparticleâ€Coated Ni Nanowire Electrodes for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2015, 5, 1401030.	19.5	84
49	A bi-functional lithium difluoro(oxalato)borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures. Electrochimica Acta, 2014, 137, 1-8.	5.2	80
50	Interfacial architectures based on a binary additive combination for high-performance Sn ₄ P ₃ anodes in sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8332-8338.	10.3	77
51	Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend. Electrochimica Acta, 2001, 46, 1581-1586.	5.2	71
52	Effect of Fluoroethylene Carbonate on Electrochemical Performances of Lithium Electrodes and Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A873-A881.	2.9	71
53	A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates. Electrochemistry Communications, 2015, 61, 121-124.	4.7	71
54	Effect of reductive cyclic carbonate additives and linear carbonate co-solvents on fast chargeability of LiNi0.6Co0.2Mn0.2O2/graphite cells. Journal of Power Sources, 2018, 400, 147-156.	7.8	68

#	Article	IF	CITATIONS
55	Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries. Electrochemistry Communications, 2014, 44, 74-77.	4.7	66
56	Mesoporous Germanium Anode Materials for Lithiumâ€lon Battery with Exceptional Cycling Stability in Wide Temperature Range. Small, 2017, 13, 1603045.	10.0	65
57	Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte. Thermochimica Acta, 2008, 480, 10-14.	2.7	63
58	Stable electrode–electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Materials, 2022, 45, 1-13.	18.0	62
59	Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids. Journal of Power Sources, 2009, 192, 636-643.	7.8	61
60	Cost-Effective Scalable Synthesis of Mesoporous Germanium Particles <i>via</i> a Redox-Transmetalation Reaction for High-Performance Energy Storage Devices. ACS Nano, 2015, 9, 2203-2212.	14.6	59
61	A high-performance nanoporous Si/Al ₂ O ₃ foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chemical Communications, 2015, 51, 4429-4432.	4.1	58
62	Co-intercalation of Mg ²⁺ and Na ⁺ in Na _{0.69} Fe ₂ (CN) ₆ as a High-Voltage Cathode for Magnesium Batteries. ACS Applied Materials & Date (Samp): Interfaces, 2016, 8, 8554-8560.	8.0	57
63	Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity: An in situ electrochemical dilatometric study. Electrochimica Acta, 2011, 56, 5095-5101.	5.2	56
64	Interfacial enhancement between lithium electrode and polymer electrolytes. Journal of Power Sources, 2003, 119-121, 610-616.	7.8	54
65	A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Advances, 2013, 3, 12625.	3.6	53
66	Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte. Solid State Ionics, 2004, 172, 19-24.	2.7	51
67	Highly Stretchable Separator Membrane for Deformable Energyâ€Storage Devices. Advanced Energy Materials, 2018, 8, 1801025.	19.5	51
68	Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries. Journal of Electrochemical Science and Technology, 2015, 6, 35-49.	2.2	51
69	An Antiaging Electrolyte Additive for Highâ€Energyâ€Density Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000563.	19.5	50
70	Amphiphilic Graft Copolymers as a Versatile Binder for Various Electrodes of Highâ€Performance Lithiumâ€ion Batteries. Small, 2016, 12, 3119-3127.	10.0	48
71	Dual-function ethyl 4,4,4-trifluorobutyrate additive for high-performance Ni-rich cathodes and stable graphite anodes. Journal of Power Sources, 2018, 396, 276-287.	7.8	48
72	Nanocomposite single ion conductor based on organic–inorganic hybrid. Solid State Ionics, 2004, 167, 293-299.	2.7	47

#	Article	IF	Citations
73	Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries. Journal of Electrochemical Science and Technology, 2015, 6, 35-49.	2.2	47
74	Recent Advances in Rechargeable Magnesium Battery Technology: A Review of the Field's Current Status and Prospects. Israel Journal of Chemistry, 2015, 55, 570-585.	2.3	46
75	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithiumâ€Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 56-65.	3.4	45
76	Foldable Electrode Architectures Based on Silverâ€Nanowireâ€Wound or Carbonâ€Nanotubeâ€Webbed Micrometerâ€Scale Fibers of Polyethylene Terephthalate Mats for Flexible Lithiumâ€ion Batteries. Advanced Materials, 2018, 30, 1705445.	21.0	45
77	Trigonal Na4Ti5O12Phase as an Intercalation Host for Rechargeable Batteries. Journal of the Electrochemical Society, 2012, 159, A2016-A2023.	2.9	44
78	Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery. Materials Chemistry and Physics, 2009, 116, 603-606.	4.0	43
79	Fluorinated Hyperbranched Cyclotriphosphazene Simultaneously Enhances the Safety and Electrochemical Performance of Highâ€Voltage Lithiumâ€Ion Batteries. ChemElectroChem, 2016, 3, 913-921.	3.4	43
80	Effect of Lithium Bis(oxalato)borate Additive on Electrochemical Performance of Li _{1.17} Ni _{0.17} Mn _{0.5} Co _{0.17} O ₂ Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A2012-A2019.	2.9	42
81	High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Advances, 2013, 3, 2538.	3.6	41
82	Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries. Journal of Power Sources, 2002, 112, 61-66.	7.8	40
83	Improving the electrochemical properties of graphite/LiCoO2 cells in ionic liquid-containing electrolytes. Journal of Power Sources, 2010, 195, 2368-2371.	7.8	40
84	Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability. Nano Energy, 2016, 26, 192-199.	16.0	40
85	Degradation of spinel lithium manganese oxides by low oxidation durability of LiPF6-based electrolyte at 60 ŰC. Solid State Ionics, 2012, 219, 41-48.	2.7	39
86	Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chemistry, 2016, 18, 2710-2716.	9.0	39
87	Synergistic Effect of Partially Fluorinated Ether and Fluoroethylene Carbonate for High-Voltage Lithium-Ion Batteries with Rapid Chargeability and Dischargeability. ACS Applied Materials & Amp; Interfaces, 2017, 9, 44161-44172.	8.0	38
88	Protective layer with oligo(ethylene glycol) borate anion receptor for lithium metal electrode stabilization. Electrochemistry Communications, 2004, 6, 1238-1242.	4.7	36
89	Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature. Journal of Materials Chemistry A, 2015, 3, 1325-1332.	10.3	36
90	Unanticipated Mechanism of the Trimethylsilyl Motif in Electrolyte Additives on Nickel-Rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43694-43704.	8.0	36

#	Article	IF	Citations
91	Electrochemical effect of coating layer on the separator based on PVdF and PE non-woven matrix. Journal of Power Sources, 2005, 146, 431-435.	7.8	35
92	The cycling performances of lithium–sulfur batteries in TEGDME/DOL containing LiNO3 additive. lonics, 2013, 19, 1795-1802.	2.4	35
93	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 20325-20334.	10.3	35
94	Solid Electrolyte Interphase Layers by Using Lithiophilic and Electrochemically Active Ionic Additives for Lithium Metal Anodes. ACS Energy Letters, 2022, 7, 67-69.	17.4	34
95	Influence of tris(pentafluorophenyl) borane as an anion receptor on ionic conductivity of LiClO4-based electrolyte for lithium batteries. Electrochimica Acta, 2005, 50, 2843-2848.	5.2	32
96	A coated Nafion membrane with a PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs). Solid State Ionics, 2005, 176, 3027-3030.	2.7	30
97	Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24479-24487.	8.0	30
98	Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell. Electrochimica Acta, 2004, 50, 588-593.	5.2	29
99	Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium–Oxygen Batteries. ACS Nano, 2019, 13, 9190-9197.	14.6	29
100	Bicontinuous structured silicon anode exhibiting stable cycling performance at elevated temperature. RSC Advances, 2013, 3, 21320.	3.6	27
101	Effect of tris(methoxy diethylene glycol) borate on ionic conductivity and electrochemical stability of ethylene carbonate-based electrolyte. Electrochimica Acta, 2008, 53, 6575-6579.	5.2	26
102	Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes. Electrochimica Acta, 2011, 56, 7249-7255.	5.2	25
103	Control of Interfacial Layers for High-Performance Porous Si Lithium-Ion Battery Anode. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16360-16367.	8.0	25
104	Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10617.	10.3	24
105	Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 °C. Electrochimica Acta, 2015, 173, 750-756.	5.2	23
106	Activated natural porous silicate for a highly promising SiO _x nanostructure finely impregnated with carbon nanofibers as a high performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13648.	10.3	22
107	lon-Exchangeable Functional Binders and Separator for High Temperature Performance of Li _{1.1} Mn _{1.86} Mg _{0.04} O _{4} Spinel Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A2234-A2243.	2.9	21
108	Malonic-acid-functionalized fullerene enables the interfacial stabilization of Ni-rich cathodes in lithium-ion batteries. Journal of Power Sources, 2022, 521, 230923.	7.8	21

#	Article	IF	CITATIONS
109	Tris(pentafluorophenyl) borane-containing electrolytes for electrochemical reversibility of lithium peroxide-based electrodes in lithium–oxygen batteries. Journal of Power Sources, 2013, 225, 95-100.	7.8	20
110	Metamorphosis of Seaweeds into Multitalented Materials for Energy Storage Applications. Advanced Energy Materials, 2019, 9, 1900570.	19.5	17
111	Multi-functionalities of natural polysaccharide for enhancing electrochemical performance of macroporous Si anodes. RSC Advances, 2014, 4, 3070-3074.	3.6	16
112	Metalâ€Air Batteries: Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air (Adv. Energy) Tj E	TQ _{q0.0} 00	rgBT/Overloo
113	A comparative study of coordination between host polymers and Li+ ions in UV-cured gel polymer electrolytes. Solid State Ionics, 2009, 180, 1204-1208.	2.7	14
114	Functional electrolytes enhancing electrochemical performance of Sn–Fe–P alloy as anode for lithium-ion batteries. Electrochemistry Communications, 2013, 35, 72-75.	4.7	14
115	Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes. Bulletin of the Korean Chemical Society, 2013, 34, 2029-2035.	1.9	13
116	In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29365-29375.	8.0	12
117	The effect of ethylene carbonate on the cycling performance of a Si electrode. Solid State Ionics, 2008, 179, 2399-2405.	2.7	11
118	Thermal Reactions of Lithiated and Delithiated Sulfur Electrodes in Lithium-Sulfur Batteries. ECS Electrochemistry Letters, 2014, 3, A26-A29.	1.9	10
119	Composites: An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries (Adv. Mater. 22/2013). Advanced Materials, 2013, 25, 3010-3010.	21.0	9
120	Zincâ€Reduced Mesoporous TiO _{<i>x</i>} Liâ€Ion Battery Anodes with Exceptional Rate Capability and Cycling Stability. Chemistry - an Asian Journal, 2016, 11, 3382-3388.	3.3	8
121	Scavenging Materials: Scavenging Materials to Stabilize LiPF ₆ â€Containing Carbonateâ€Based Electrolytes for Liâ€lon Batteries (Adv. Mater. 20/2019). Advanced Materials, 2019, 31, 1970148.	21.0	8
122	Quasi-solid-state electric double layer capacitors assembled with sulfonated poly(fluorenyl ether) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50
123	Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode. Journal of Power Sources, 2006, 163, 264-268.	7.8	6
124	Thermally Cross-Linkable Diamino-Polyethylene Glycol Additive with Polymeric Binder for Stable Cyclability of Silicon Nanoparticle Based Negative Electrodes in Lithium Ion Batteries. Science of Advanced Materials, 2016, 8, 252-256.	0.7	6
125	Effect of silica on the interfacial stability of the PEO-based polymer electrolytes. Polymer Bulletin, 2002, 49, 63-68.	3.3	5
126	Bifunctional Li 4 Ti 5 O 12 coating layer for the enhanced kinetics and stability of carbon anode for lithium rechargeable batteries. Journal of Alloys and Compounds, 2014, 615, 220-226.	5 . 5	5

#	Article	IF	CITATIONS
127	Molecular Engineered Safer Organic Battery through the Incorporation of Flame Retarding Organophosphonate Moiety. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10096-10101.	8.0	5
128	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium-Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 3-3.	3.4	4
129	Lithiumâ€lon Batteries: Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€lon Batteries (Adv. Energy Mater. 15/2020). Advanced Energy Materials, 2020, 10, 2070069.	19.5	2
130	Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery. Journal of the Korean Electrochemical Society, 2009, 12, 203-218.	0.1	1
131	Effect of Lithium Bis(Oxalato)Borate Additive on Thermal Stability of Si Nanoparticle-based Anode. Journal of the Korean Electrochemical Society, 2014, 17, 79-85.	0.1	1
132	SINGLE ION CONDUCTOR BASED ON MODIFIED SILICA. , 2002, , .		0
133	Lithiumâ€lon Batteries: Mesoporous Germanium Anode Materials for Lithiumâ€lon Battery with Exceptional Cycling Stability in Wide Temperature Range (Small 13/2017). Small, 2017, 13, .	10.0	0
134	Energy Spotlight. ACS Energy Letters, 2020, 5, 2454-2455.	17.4	0
135	Energy Spotlight. ACS Energy Letters, 2020, 5, 938-939.	17.4	0
136	Energy Spotlight. ACS Energy Letters, 2021, 6, 1150-1152.	17.4	0
137	Effect of Electrolytes on Electrochemical Properties of Magnesium Electrodes. Journal of Electrochemical Science and Technology, 2012, 3, 159-164.	2.2	O