Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7746937/publications.pdf

Version: 2024-02-01

159585 175258 2,903 64 30 52 citations h-index g-index papers 64 64 64 2972 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Research, 2022, 15, 933-941.	10.4	20
2	Abatement of NO/SO2/Hg0 from flue gas by advanced oxidation processes (AOPs): Tech-category, status quo and prospects. Science of the Total Environment, 2022, 806, 150958.	8.0	17
3	The Impact of Alternative Fuels on Ship Engine Emissions and Aftertreatment Systems: A Review. Catalysts, 2022, 12, 138.	3 . 5	7
4	Promotion effect of Ni doping on the oxygen resistance property of Fe/CeO2 catalyst for CO-SCR reaction: Activity test and mechanism investigation. Journal of Hazardous Materials, 2022, 431, 128622.	12.4	34
5	A composite photocatalytic system based on spent alkaline Zn–Mn batteries for toluene removal under multiple conditions. Environmental Research, 2022, 212, 113300.	7.5	3
6	The flow and heat transfer characteristics of DPF porous media with different structures based on LBM. Open Physics, 2022, 20, 349-369.	1.7	2
7	Optimization of a Fenton-based gas–liquid two-phase reactor for NO _x removal. Chemical Engineering Communications, 2021, 208, 937-949.	2.6	2
8	Elucidating the pyrolysis reaction mechanism of Calotropis procera and analysis of pyrolysis products to evaluate its potential for bioenergy and chemicals. Bioresource Technology, 2021, 322, 124545.	9.6	42
9	Review on the NO removal from flue gas by oxidation methods. Journal of Environmental Sciences, 2021, 101, 49-71.	6.1	57
10	Effects of system parameters and residual ions on the oxidation removal of NO by Fenton method. Environmental Science and Pollution Research, 2021, 28, 2959-2971.	5. 3	4
11	Mn-based catalysts supported on \hat{I}^3 -Al ₂ O ₃ , TiO ₂ and MCM-41: a comparison for low-temperature NO oxidation with low ratio of O ₃ /NO. RSC Advances, 2021, 11, 18945-18959.	3.6	8
12	Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO2 fixation simultaneously. Journal of Environmental Management, 2021, 284, 112070.	7.8	27
13	Influence of thermal assistance on the biodegradation of organics during food waste bio-drying: Microbial stimulation and energy assessment. Chemosphere, 2021, 272, 129875.	8.2	16
14	Enhanced oxidative removal of NO by UV/in situ Fenton: Factors, kinetics and simulation. Science of the Total Environment, 2021, 778, 146202.	8.0	9
15	Exposure characteristics and risk assessment of VOCs from Chinese residential cooking. Journal of Environmental Management, 2021, 289, 112535.	7.8	18
16	Superhydrophobic-superoleophilic biochar-based foam for high-efficiency and repeatable oil-water separation. Science of the Total Environment, 2021, 780, 146517.	8.0	39
17	Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid. Green Chemistry, 2021, 23, 1536-1561.	9.0	42
18	Mechanism of the Heterogeneous Reduction of NO on a Sodium-Doped Char Surface: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 24381-24395.	3.1	12

#	Article	IF	CITATIONS
19	Application of biochar and its composites in catalysis. Chemosphere, 2020, 240, 124842.	8.2	153
20	Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. Journal of Hazardous Materials, 2020, 384, 121357.	12.4	102
21	The emission characteristic of VOCs and the toxicity of BTEX from different mosquito-repellent incenses. Journal of Hazardous Materials, 2020, 384, 121428.	12.4	26
22	MIL-100(Fe) supported Mn-based catalyst and its behavior in HgO removal from flue gas. Journal of Hazardous Materials, 2020, 381, 121003.	12.4	37
23	Synergetic Effect of Nitrogen/Sulfur Dual-Doped Hierarchically Porous Carbon Networks for Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 749-758.	6.7	23
24	Hierarchically porous biochar synthesized with CaCO3 template for efficient HgO adsorption from flue gas. Fuel Processing Technology, 2020, 199, 106247.	7.2	28
25	Comparative Study of NO Oxidation under a Low O3/NO Molar Ratio Using 15% Mn/TiO2, 15% Co/TiO2, and 15% Mn–Co(2:1)/TiO2 Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 1467-1476.	3.7	11
26	Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms. Chemosphere, 2020, 246, 125609.	8.2	115
27	Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture. Environmental Pollution, 2020, 267, 115487.	7.5	37
28	Constructing Defect-Rich MoS ₂ /N-Doped Carbon Nanosheets for Catalytic Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13318-13327.	6.7	33
29	Emission control strategies of hazardous trace elements from coal-fired power plants in China. Journal of Environmental Sciences, 2020, 93, 66-90.	6.1	74
30	Recycling of spent alkaline Zn-Mn batteries directly: Combination with TiO2 to construct a novel Z-scheme photocatalytic system. Journal of Hazardous Materials, 2020, 400, 123236.	12.4	27
31	Catalytic oxidation of NO over MnO _x â€"CoO _x /TiO ₂ in the presence of a low ratio of O ₃ /NO: activity and mechanism. RSC Advances, 2020, 10, 24493-24506.	3.6	4
32	Enhanced photocatalytic degradation of xylene by blackening TiO2 nanoparticles with high dispersion of CuO. Journal of Hazardous Materials, 2020, 391, 121642.	12.4	27
33	Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose, 2020, 27, 3013-3023.	4.9	35
34	Random pore structure and REV scale flow analysis of engine particulate filter based on LBM. Open Physics, 2020, 18, 881-896.	1.7	4
35	Pyrolysis and Thermogravimetric Study to Elucidate the Bioenergy Potential of Novel Feedstock Produced on Poor Soils While Keeping the Environmental Sustainability Intact. Sustainability, 2019, 11, 3592.	3.2	20
36	Crab Shell-Derived Lotus Rootlike Porous Carbon for High Efficiency Isomerization of Glucose to Fructose under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 4466-4472.	6.7	34

#	Article	IF	Citations
37	Fundamental studies of carbon capture using CaO-based materials. Journal of Materials Chemistry A, 2019, 7, 9977-9987.	10.3	50
38	Ball-milled biochar for alternative carbon electrode. Environmental Science and Pollution Research, 2019, 26, 14693-14702.	5. 3	30
39	Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 2019, 659, 473-490.	8.0	310
40	The emission of PM2.5 in respiratory zone from Chinese family cooking and its health effect. Science of the Total Environment, 2019, 654, 671-677.	8.0	58
41	Development of a novel chem-bio hybrid process using biochar supported nanoscale iron sulfide composite and Corynebacterium variabile HRJ4 for enhanced trichloroethylene dechlorination. Water Research, 2018, 147, 132-141.	11.3	41
42	Vacancy Associates Evoked Hematite Mesocubes with Enhanced Efficiency in Li Storage Behaviors. Journal of Physical Chemistry C, 2018, 122, 23377-23384.	3.1	1
43	A comparative study of manganese–cerium doped metal–organic frameworks prepared via impregnation and in situ methods in the selective catalytic reduction of NO. RSC Advances, 2017, 7, 5928-5936.	3.6	33
44	Simultaneous removal of NO and Hg 0 over Ce-Cu modified V 2 O 5 /TiO 2 based commercial SCR catalysts. Journal of Hazardous Materials, 2017, 330, 83-92.	12.4	132
45	Comprehensive utilization of dairy manure to produce glucose and hierarchical porous carbon for supercapacitors. Cellulose, 2017, 24, 2571-2579.	4.9	15
46	The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas. Chemical Engineering Journal, 2017, 326, 551-560.	12.7	75
47	UiO-66 and its Br-modified derivates for elemental mercury removal. Journal of Hazardous Materials, 2016, 320, 556-563.	12.4	70
48	Start-up performance of Anammox process in a fixed bed reactor (FBR) filled with honeycomb-like polypropylene carriers. Water Science and Technology, 2016, 73, 1848-1854.	2.5	15
49	Removal of elemental mercury by KI-impregnated clay. Frontiers of Environmental Science and Engineering, 2016, 10, 236-243.	6.0	6
50	Effects of flue gas components on removal of elemental mercury over Ce–MnO x /Ti-PILCs. Journal of Hazardous Materials, 2016, 304, 10-17.	12.4	67
51	Kinetics study on the capture of elemental mercury in flue gas by Klâ€impregnated clays. Canadian Journal of Chemical Engineering, 2015, 93, 2168-2176.	1.7	5
52	Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. Journal of Hazardous Materials, 2015, 298, 162-169.	12.4	95
53	Simultaneous Removal of NO and Hg ⁰ from Flue Gas over Mn–Ce/Ti-PILCs. Environmental Science & Company (1998) Science & Company (1998	10.0	112
54	Homogeneous MnO –CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR. Powder Technology, 2014, 253, 152-157.	4.2	64

#	Article	IF	CITATIONS
55	Synthesis of a novel cross-linker doubles as a functional monomer for preparing a water compatible molecularly imprinted polymer. Analytical Methods, 2014, 6, 9483-9489.	2.7	10
56	A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China. Journal of Hazardous Materials, 2014, 279, 133-140.	12.4	126
57	Hg ²⁺ Adsorption from a Low-Concentration Aqueous Solution on Chitosan Beads Modified by Combining Polyamination with Hg ²⁺ -Imprinted Technologies. Industrial & Engineering Chemistry Research, 2013, 52, 13120-13127.	3.7	35
58	Effect of K and Ca on catalytic activity of Mn-CeO \times /Ti-PILC. Frontiers of Environmental Science and Engineering, 2013, 7, 512-517.	6.0	11
59	A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O. Journal of Environmental Sciences, 2013, 25, 791-800.	6.1	118
60	Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature. Journal of Environmental Sciences, 2012, 24, 499-506.	6.1	38
61	MnO _{<i>x</i>} /Ce _{0.6} Zr _{0.4} O ₂ Catalysts for Low-Temperature Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Environmental Engineering Science, 2011, 28, 291-298.	1.6	11
62	Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Journal of Environmental Sciences, 2010, 22, 1447-1454.	6.1	176
63	Low-temperature selective catalytic reduction of NO with NH3 based on MnO x -CeO x /ACFN. Frontiers of Chemical Engineering in China, 2008, 2, 325-329.	0.6	6
64	Pyrolysis of scrap tyres with zeolite USY. Journal of Hazardous Materials, 2006, 137, 1065-1073.	12.4	44