
## Dieter Neher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774670/publications.pdf Version: 2024-02-01



DIFTED NEHED

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy and Environmental Science, 2022, 15, 714-726.                               | 30.8 | 68        |
| 2  | Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis<br>Measurements. Solar Rrl, 2022, 6, .                                                       | 5.8  | 36        |
| 3  | Reply to Comment on "Enhanced Charge Selectivity via Anodic-C <sub>60</sub> Layer Reduces<br>Nonradiative Losses in Organic Solar Cells― ACS Applied Materials & Interfaces, 2022, 14, 7527-7530. | 8.0  | 2         |
| 4  | Understanding the Role of Order in Yâ€Series Nonâ€Fullerene Solar Cells to Realize High Open ircuit<br>Voltages. Advanced Energy Materials, 2022, 12, .                                           | 19.5 | 32        |
| 5  | Understanding Performance Limiting Interfacial Recombination in <i>pin</i> Perovskite Solar Cells.<br>Advanced Energy Materials, 2022, 12, .                                                      | 19.5 | 95        |
| 6  | Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604, 280-286.                                                                                                 | 27.8 | 181       |
| 7  | Wave Optics of Differential Absorption Spectroscopy in Thick-Junction Organic Solar Cells: Optical Artifacts and Correction Strategies. Physical Review Applied, 2022, 17, .                      | 3.8  | 3         |
| 8  | Revealing the doping density in perovskite solar cells and its impact on device performance. Applied<br>Physics Reviews, 2022, 9, .                                                               | 11.3 | 19        |
| 9  | Effects of energetic disorder in bulk heterojunction organic solar cells. Energy and Environmental<br>Science, 2022, 15, 2806-2818.                                                               | 30.8 | 57        |
| 10 | On the Interplay between CT and Singlet Exciton Emission in Organic Solar Cells with Small Driving<br>Force and Its Impact on Voltage Loss. Advanced Energy Materials, 2022, 12, .                | 19.5 | 10        |
| 11 | Determination of the charge carrier density in organic solar cells: A tutorial. Journal of Applied<br>Physics, 2022, 131, .                                                                       | 2.5  | 13        |
| 12 | Quantifying Quasiâ€Fermi Level Splitting and Openâ€Circuit Voltage Losses in Highly Efficient<br>Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000649.                                   | 5.8  | 19        |
| 13 | Tuning halide perovskite energy levels. Energy and Environmental Science, 2021, 14, 1429-1438.                                                                                                    | 30.8 | 124       |
| 14 | A History and Perspective of Nonâ€Fullerene Electron Acceptors for Organic Solar Cells. Advanced<br>Energy Materials, 2021, 11, 2003570.                                                          | 19.5 | 323       |
| 15 | Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells.<br>Energy and Environmental Science, 2021, 14, 4508-4522.                               | 30.8 | 76        |
| 16 | Spin–spin interactions and spin delocalisation in a doped organic semiconductor probed by EPR spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13827-13841.                           | 2.8  | 11        |
| 17 | Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient<br>Inverted Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1045-1054.                   | 17.4 | 54        |
| 18 | Enhanced Charge Selectivity via Anodic-C <sub>60</sub> Layer Reduces Nonradiative Losses in Organic<br>Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 12603-12609.                    | 8.0  | 9         |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nature Communications, 2021, 12, 1772.                                                                                         | 12.8 | 27        |
| 20 | 27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom<br>Cells. Solar Rrl, 2021, 5, 2100244.                                                                                      | 5.8  | 59        |
| 21 | Explaining the Fillâ€Factor and Photocurrent Losses of Nonfullerene Acceptorâ€Based Solar Cells by<br>Probing the Longâ€Range Charge Carrier Diffusion and Drift Lengths. Advanced Energy Materials, 2021,<br>11, 2100804. | 19.5 | 23        |
| 22 | Pathways toward 30% Efficient Singleâ€Junction Perovskite Solar Cells and the Role of Mobile Ions.<br>Solar Rrl, 2021, 5, 2100219.                                                                                         | 5.8  | 48        |
| 23 | 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. CheM, 2021, 7, 1903-1916.                                                                                       | 11.7 | 108       |
| 24 | Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions. Advanced Energy Materials, 2021, 11, 2101447.                                                                                                       | 19.5 | 52        |
| 25 | Halogenâ€Bonded Holeâ€Transport Material Suppresses Charge Recombination and Enhances Stability of<br>Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101553.                                                | 19.5 | 44        |
| 26 | General Rules for the Impact of Energetic Disorder and Mobility on Nongeminate Recombination in Phase-Separated Organic Solar Cells. Physical Review Applied, 2021, 16, .                                                  | 3.8  | 8         |
| 27 | Infrared spectroscopy depth profiling of organic thin films. Materials Horizons, 2021, 8, 1461-1471.                                                                                                                       | 12.2 | 10        |
| 28 | Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence<br>in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites. ACS Energy Letters, 2021, 6,<br>419-428.           | 17.4 | 31        |
| 29 | Excitons Dominate the Emission from PM6:Y6 Solar Cells, but This Does Not Help the Open-Circuit<br>Voltage of the Device. ACS Energy Letters, 2021, 6, 557-564.                                                            | 17.4 | 57        |
| 30 | Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .                                                                                                                       | 5.1  | 102       |
| 31 | Orders of Recombination in Complete Perovskite Solar Cells – Linking Timeâ€Resolved and Steadyâ€ <del>S</del> tate<br>Measurements. Advanced Energy Materials, 2021, 11, 2101823.                                          | 19.5 | 31        |
| 32 | Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization. ACS Energy Letters, 2021, 6, 3982-3991.                                                    | 17.4 | 22        |
| 33 | Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite<br>Solar Cells. ACS Nano, 2020, 14, 1445-1456.                                                                        | 14.6 | 115       |
| 34 | Organic Solar Cells with Large Insensitivity to Donor Polymer Molar Mass across All Acceptor<br>Classes. ACS Applied Polymer Materials, 2020, 2, 5300-5308.                                                                | 4.4  | 7         |
| 35 | Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells.<br>ACS Energy Letters, 2020, 5, 2728-2736.                                                                            | 17.4 | 114       |
| 36 | Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono-<br>and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.               | 8.0  | 28        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Putting Order into PM6:Y6 Solar Cells to Reduce the Langevin Recombination in 400 nm Thick Junction.<br>Solar Rrl, 2020, 4, 2000498.                                                                            | 5.8  | 49        |
| 38 | Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction.<br>Science, 2020, 370, 1300-1309.                                                                             | 12.6 | 1,120     |
| 39 | 25.1% Highâ€Efficiency Monolithic Perovskite Silicon Tandem Solar Cell with a High Bandgap Perovskite<br>Absorber. Solar Rrl, 2020, 4, 2000152.                                                                 | 5.8  | 81        |
| 40 | Position-locking of volatile reaction products by atmosphere and capping layers slows down<br>photodecomposition of methylammonium lead triiodide perovskite. RSC Advances, 2020, 10, 17534-17542.              | 3.6  | 16        |
| 41 | Managing Phase Purities and Crystal Orientation for Highâ€Performance and Photostable Cesium Lead<br>Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000213.                                                | 5.8  | 17        |
| 42 | On the Origin of the Ideality Factor in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000502.                                                                                                   | 19.5 | 175       |
| 43 | Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar<br>Cells. ACS Energy Letters, 2020, 5, 2343-2348.                                                           | 17.4 | 20        |
| 44 | How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an<br>Implied Efficiency Exceeding 28%. Advanced Materials, 2020, 32, e2000080.                               | 21.0 | 134       |
| 45 | Comparing the excited-state properties of a mixed-cation–mixed-halide perovskite to methylammonium<br>lead iodide. Journal of Chemical Physics, 2020, 152, 104703.                                              | 3.0  | 18        |
| 46 | On the Question of the Need for a Builtâ€In Potential in Perovskite Solar Cells. Advanced Materials<br>Interfaces, 2020, 7, 2000041.                                                                            | 3.7  | 79        |
| 47 | Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of<br>Poly(3-hexylthiophene) in Solution. Journal of Physical Chemistry B, 2020, 124, 7694-7708.                                 | 2.6  | 47        |
| 48 | The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl):<br>individual polymer chains <i>versus</i> aggregates. Journal of Materials Chemistry C, 2020, 8,<br>2870-2879. | 5.5  | 32        |
| 49 | Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers. Nature Communications, 2020, 11, 833.                                                          | 12.8 | 130       |
| 50 | Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene<br>Solar Cell. Advanced Materials, 2020, 32, e1906763.                                                    | 21.0 | 258       |
| 51 | Extraordinarily long diffusion length in PM6:Y6 organic solar cells. Journal of Materials Chemistry A, 2020, 8, 7854-7860.                                                                                      | 10.3 | 74        |
| 52 | Perovskite semiconductors for next generation optoelectronic applications. APL Materials, 2019, 7, .                                                                                                            | 5.1  | 21        |
| 53 | The Analysis of Sensitive Materials Using EBSD: The Importance of Beam Conditions and Detector Sensitivity. Microscopy and Microanalysis, 2019, 25, 2394-2395.                                                  | 0.4  | 3         |
| 54 | Strong light-matter coupling for reduced photon energy losses in organic photovoltaics. Nature<br>Communications, 2019, 10, 3706.                                                                               | 12.8 | 72        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | On the origin of open-circuit voltage losses in flexible <i>n-i-p</i> perovskite solar cells. Science and Technology of Advanced Materials, 2019, 20, 786-795.                                                                       | 6.1  | 15        |
| 56 | The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy and Environmental Science, 2019, 12, 2778-2788.                                     | 30.8 | 570       |
| 57 | On the Relation between the Openâ€Circuit Voltage and Quasiâ€Fermi Level Splitting in Efficient<br>Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901631.                                                              | 19.5 | 275       |
| 58 | Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Applied Energy Materials, 2019, 2, 6280-6287.                                                    | 5.1  | 110       |
| 59 | Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Advanced Materials, 2019, 31, e1902762.                                                                                                                | 21.0 | 422       |
| 60 | Decoding Charge Recombination through Charge Generation in Organic Solar Cells. Solar Rrl, 2019, 3, 1900184.                                                                                                                         | 5.8  | 41        |
| 61 | Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit<br>Voltage in Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2887-2892.                                                        | 17.4 | 86        |
| 62 | Correction to "How to Make over 20% Efficient Perovskite Solar Cells in Regular<br>( <i>n</i> – <i>i</i> – <i>p</i> ) and Inverted ( <i>p</i> – <i>i</i> – <i>n</i> ) Architectures― Chemistry of<br>Materials, 2019, 31, 8576-8576. | 6.7  | 3         |
| 63 | High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustainable<br>Energy and Fuels, 2019, 3, 550-563.                                                                                         | 4.9  | 57        |
| 64 | Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies. ACS Applied Materials & Interfaces, 2019, 11, 21578-21583.                                                       | 8.0  | 44        |
| 65 | Rationalizing the Molecular Design of Holeâ€5elective Contacts to Improve Charge Extraction in<br>Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900990.                                                               | 19.5 | 56        |
| 66 | Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor<br>Losses in Optimized Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 3473-3480.                                 | 4.6  | 26        |
| 67 | The Role of Bulk and Interface Recombination in Highâ€Efficiency Lowâ€Dimensional Perovskite Solar<br>Cells. Advanced Materials, 2019, 31, e1901090.                                                                                 | 21.0 | 59        |
| 68 | Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nature<br>Communications, 2019, 10, 2466.                                                                                                    | 12.8 | 101       |
| 69 | Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small<br>Molecules in Vacuum-Deposited Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10,<br>2684-2691.              | 4.6  | 32        |
| 70 | Direct observation of state-filling at hybrid tin oxide/organic interfaces. Applied Physics Letters, 2019, 114, .                                                                                                                    | 3.3  | 4         |
| 71 | Equilibrated Charge Carrier Populations Govern Steady-State Nongeminate Recombination in<br>Disordered Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 1374-1381.                                              | 4.6  | 18        |
| 72 | Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nature Materials, 2019, 18, 459-464.                                                                                   | 27.5 | 131       |

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in<br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 9172-9181.                                                                                                         | 8.0  | 28        |
| 74 | Impact of Bimolecular Recombination on the Fill Factor of Fullerene and Nonfullerene-Based Solar<br>Cells: A Comparative Study of Charge Generation and Extraction. Journal of Physical Chemistry C,<br>2019, 123, 6823-6830.                                                          | 3.1  | 20        |
| 75 | Reliability of charge carrier recombination data determined with charge extraction methods. Journal of Applied Physics, 2019, 126, .                                                                                                                                                   | 2.5  | 13        |
| 76 | Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: The Case of<br>Low-Donor-Content Blends. Journal of the American Chemical Society, 2019, 141, 2329-2341.                                                                                            | 13.7 | 54        |
| 77 | Constructing the Electronic Structure of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> and<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Perovskite Thin Films from Single-Crystal Band<br>Structure Measurements. Journal of Physical Chemistry Letters, 2019, 10, 601-609. | 4.6  | 78        |
| 78 | Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites.<br>Frontiers in Chemistry, 2019, 7, 946.                                                                                                                                              | 3.6  | 14        |
| 79 | Impact of Triplet Excited States on the Open ircuit Voltage of Organic Solar Cells. Advanced Energy<br>Materials, 2018, 8, 1800451.                                                                                                                                                    | 19.5 | 36        |
| 80 | Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with<br>Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.                                                                                                                | 19.5 | 43        |
| 81 | The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymerâ€Based Solar<br>Cells. Advanced Energy Materials, 2018, 8, 1703355.                                                                                                                                | 19.5 | 82        |
| 82 | On the Molecular Origin of Charge Separation at the Donor–Acceptor Interface. Advanced Energy<br>Materials, 2018, 8, 1702232.                                                                                                                                                          | 19.5 | 51        |
| 83 | Charge Generation and Recombination in an Organic Solar Cell with Low Energetic Offsets. Advanced Energy Materials, 2018, 8, 1701073.                                                                                                                                                  | 19.5 | 60        |
| 84 | From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton<br>Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with<br>Fluorineâ€6ubstituted Polymer Donors. Advanced Energy Materials, 2018, 8, 1701678.              | 19.5 | 33        |
| 85 | Alkyl Branching Position in Diketopyrrolopyrrole Polymers: Interplay between Fibrillar Morphology<br>and Crystallinity and Their Effect on Photogeneration and Recombination in Bulk-Heterojunction<br>Solar Cells. Chemistry of Materials, 2018, 30, 6801-6809.                       | 6.7  | 13        |
| 86 | Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces. Physical Review B, 2018,<br>98, .                                                                                                                                                                      | 3.2  | 12        |
| 87 | Boron dipyrromethene (BODIPY) with <i>meso</i> -perfluorinated alkyl substituents as near infrared donors in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 18583-18591.                                                                                              | 10.3 | 34        |
| 88 | Probing the pathways of free charge generation in organic bulk heterojunction solar cells. Nature<br>Communications, 2018, 9, 2038.                                                                                                                                                    | 12.8 | 104       |
| 89 | Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied<br>Materials & Interfaces, 2018, 10, 21681-21687.                                                                                                                                  | 8.0  | 89        |
| 90 | Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy, 2018, 3, 847-854.                                                                                                                                 | 39.5 | 721       |

| #   | Article                                                                                                                                                                                                                                                                                   | IF       | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 91  | Cs <i><sub>x</sub></i> FA <sub>1–<i>x</i></sub> Pb(I <sub>1–<i>y</i></sub> Br <i><sub>y</sub></i> ) <sub><br/>Perovskite Compositions: the Appearance of Wrinkled Morphology and its Impact on Solar Cell<br/>Performance. Journal of Physical Chemistry C, 2018, 122, 17123-17135.</sub> | 3<br>3.1 | 42        |
| 92  | Measuring Aging Stability of Perovskite Solar Cells. Joule, 2018, 2, 1019-1024.                                                                                                                                                                                                           | 24.0     | 115       |
| 93  | How to Make over 20% Efficient Perovskite Solar Cells in Regular ( <i>n–i–p</i> ) and Inverted<br>( <i>p–i–n</i> ) Architectures. Chemistry of Materials, 2018, 30, 4193-4201.                                                                                                            | 6.7      | 473       |
| 94  | Absorption Tails of Donor:C <sub>60</sub> Blends Provide Insight into Thermally Activated<br>Charge-Transfer Processes and Polaron Relaxation. Journal of the American Chemical Society, 2017,<br>139, 1699-1704.                                                                         | 13.7     | 73        |
| 95  | Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nature Energy, 2017, 2, .                                                                                                                                                                                  | 39.5     | 494       |
| 96  | Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS<br>Photonics, 2017, 4, 1232-1239.                                                                                                                                                             | 6.6      | 103       |
| 97  | It Takes Two to Tango—Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device<br>Performance and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 17245-17255.                                                                                      | 8.0      | 107       |
| 98  | Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene. Journal of Physical Chemistry C, 2017, 121, 10305-10316.                                                                                                            | 3.1      | 11        |
| 99  | "The Easier the Better―Preparation of Efficient Photocatalysts—Metastable Poly(heptazine imide)<br>Salts. Advanced Materials, 2017, 29, 1700555.                                                                                                                                          | 21.0     | 206       |
| 100 | Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy and Environmental Science, 2017, 10, 1530-1539.                                                                                                                   | 30.8     | 311       |
| 101 | Reduced Interfaceâ€Mediated Recombination for High Openâ€Circuit Voltages in<br>CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Solar Cells. Advanced Materials, 2017, 29, 1700159.                                                                                                      | 21.0     | 210       |
| 102 | Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different<br>Means, Same Results. Journal of Physical Chemistry C, 2017, 121, 2059-2068.                                                                                                              | 3.1      | 22        |
| 103 | Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors. ACS Applied Materials & amp; Interfaces, 2017, 9, 42011-42019.                                                                                                           | 8.0      | 5         |
| 104 | Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum<br>Efficiencies. Advanced Energy Materials, 2017, 7, 1700855.                                                                                                                              | 19.5     | 122       |
| 105 | Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nature Communications, 2017, 8, 79.                                                                                                                                              | 12.8     | 198       |
| 106 | Intercalated vs Nonintercalated Morphologies in Donor–Acceptor Bulk Heterojunction Solar Cells:<br>PBTTT:Fullerene Charge Generation and Recombination Revisited. Journal of Physical Chemistry<br>Letters, 2017, 8, 4061-4068.                                                           | 4.6      | 15        |
| 107 | Effect of the RC time on photocurrent transients and determination of charge carrier mobilities.<br>Journal of Applied Physics, 2017, 122, 195501.                                                                                                                                        | 2.5      | 9         |
| 108 | Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility. Chemistry of<br>Materials, 2017, 29, 10220-10232.                                                                                                                                                  | 6.7      | 40        |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitrideâ€like<br>Materials for More Efficient Solar Hydrogen and Oxygen Evolution. ChemCatChem, 2017, 9, 167-174.                                                    | 3.7  | 151       |
| 110 | Dispersive and steady-state recombination in organic disordered semiconductors. Physical Review B, 2017, 96, .                                                                                                                                           | 3.2  | 24        |
| 111 | Metal nanoparticle mediated space charge and its optical control in an organic hole-only device.<br>Applied Physics Letters, 2016, 108, 153302.                                                                                                          | 3.3  | 4         |
| 112 | Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend. Scientific Reports, 2016, 6, 26832.                                                                                                                                       | 3.3  | 53        |
| 113 | Free carrier generation and recombination in PbS quantum dot solar cells. Applied Physics Letters, 2016, 108, .                                                                                                                                          | 3.3  | 16        |
| 114 | Charge carrier recombination dynamics in perovskite and polymer solar cells. Applied Physics Letters, 2016, 108, .                                                                                                                                       | 3.3  | 42        |
| 115 | Dualâ€Characteristic Transistors Based on Semiconducting Polymer Blends. Advanced Electronic<br>Materials, 2016, 2, 1600267.                                                                                                                             | 5.1  | 20        |
| 116 | Surface Structure of Semicrystalline Naphthalene Diimide–Bithiophene Copolymer Films Studied with<br>Atomic Force Microscopy. Macromolecules, 2016, 49, 6549-6557.                                                                                       | 4.8  | 13        |
| 117 | A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents. Scientific Reports, 2016, 6, 24861.                                                                                                                                  | 3.3  | 98        |
| 118 | Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors. Advanced<br>Functional Materials, 2016, 26, 8011-8022.                                                                                                                      | 14.9 | 24        |
| 119 | pâ€Type Doping of Poly(3â€hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane.<br>Advanced Electronic Materials, 2016, 2, 1600204.                                                                                                  | 5.1  | 80        |
| 120 | Role of Intrinsic Photogeneration in Single Layer and Bilayer Solar Cells with C <sub>60</sub> and PCBM. Journal of Physical Chemistry C, 2016, 120, 25083-25091.                                                                                        | 3.1  | 39        |
| 121 | The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. Journal of Materials Chemistry C, 2016, 4, 10827-10838. | 5.5  | 11        |
| 122 | Fluorine-containing low-energy-gap organic dyes with low voltage losses for organic solar cells.<br>Synthetic Metals, 2016, 222, 232-239.                                                                                                                | 3.9  | 4         |
| 123 | The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar<br>Cells with Low-Mobility Photoactive Layers. Journal of Physical Chemistry Letters, 2016, 7, 4716-4721.                                              | 4.6  | 37        |
| 124 | Charge-Transfer–Solvent Interaction Predefines Doping Efficiency in p-Doped P3HT Films. Chemistry of<br>Materials, 2016, 28, 4432-4439.                                                                                                                  | 6.7  | 65        |
| 125 | Spatial Orientation and Order of Structure-Defining Subunits in Thin Films of a High Mobility n-Type<br>Copolymer. Macromolecules, 2016, 49, 1798-1806.                                                                                                  | 4.8  | 9         |
| 126 | Effect of Solvent Additive on Generation, Recombination, and Extraction in PTB7:PCBM Solar Cells: A<br>Conclusive Experimental and Numerical Simulation Study. Journal of Physical Chemistry C, 2015, 119,<br>8310-8320.                                 | 3.1  | 96        |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Hybrid Organic/Inorganic Thinâ€Film Multijunction Solar Cells Exceeding 11% Power Conversion<br>Efficiency. Advanced Materials, 2015, 27, 1262-1267.                                                                                          | 21.0 | 40        |
| 128 | Light-Tunable Plasmonic Nanoarchitectures Using Gold Nanoparticle–Azobenzene-Containing<br>Cationic Surfactant Complexes. Journal of Physical Chemistry C, 2015, 119, 3762-3770.                                                              | 3.1  | 27        |
| 129 | Charge Transfer Absorption and Emission at ZnO/Organic Interfaces. Journal of Physical Chemistry<br>Letters, 2015, 6, 500-504.                                                                                                                | 4.6  | 37        |
| 130 | Charge transfer in and conductivity of molecularly doped thiopheneâ€based copolymers. Journal of<br>Polymer Science, Part B: Polymer Physics, 2015, 53, 58-63.                                                                                | 2.1  | 43        |
| 131 | Colorâ€Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and<br>Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 913-917.                                                                        | 7.3  | 115       |
| 132 | Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nature Communications, 2015, 6, 6951.                                                                                   | 12.8 | 255       |
| 133 | Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct<br>Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer. Journal of the American<br>Chemical Society, 2015, 137, 6034-6043. | 13.7 | 18        |
| 134 | Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nature Communications, 2015, 6, 7083.                                                                                     | 12.8 | 517       |
| 135 | Highly Crystalline Films of PCPDTBT with Branched Side Chains by Solvent Vapor Crystallization:<br>Influence on Optoâ€Electronic Properties. Advanced Materials, 2015, 27, 1223-1228.                                                         | 21.0 | 51        |
| 136 | P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance. Advances in Polymer Science, 2014, , 181-232.                                                                                                                     | 0.8  | 11        |
| 137 | Charge Separation in PCPDTBT:PCBM Blends from an EPR Perspective. Journal of Physical Chemistry C, 2014, 118, 28482-28493.                                                                                                                    | 3.1  | 61        |
| 138 | Nongeminate and Geminate Recombination in PTB7:PCBM Solar Cells. Advanced Functional Materials, 2014, 24, 1306-1311.                                                                                                                          | 14.9 | 142       |
| 139 | SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis. Catalysis<br>Today, 2014, 225, 185-190.                                                                                                            | 4.4  | 56        |
| 140 | A Conclusive View on Charge Generation, Recombination, and Extraction in Asâ€Prepared and Annealed<br>P3HT:PCBM Blends: Combined Experimental and Simulation Work. Advanced Energy Materials, 2014, 4,<br>1301401.                            | 19.5 | 104       |
| 141 | Charge Transport Anisotropy in Highly Oriented Thin Films of the Acceptor Polymer P(NDI2ODâ€₹2).<br>Advanced Energy Materials, 2014, 4, 1301659.                                                                                              | 19.5 | 116       |
| 142 | Overcoming Geminate Recombination and Enhancing Extraction in Solutionâ€Processed Small Molecule<br>Solar Cells. Advanced Energy Materials, 2014, 4, 1400230.                                                                                 | 19.5 | 76        |
| 143 | On the Efficiency of Charge Transfer State Splitting in Polymer:Fullerene Solar Cells. Advanced<br>Materials, 2014, 26, 2533-2539.                                                                                                            | 21.0 | 106       |
| 144 | Organic Solar Cells: On the Efficiency of Charge Transfer State Splitting in Polymer:Fullerene Solar<br>Cells (Adv. Mater. 16/2014). Advanced Materials, 2014, 26, 2607-2607.                                                                 | 21.0 | 0         |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in Allâ€Polymer<br>Solar Cells. Advanced Functional Materials, 2014, 24, 4068-4081.                                                                 | 14.9 | 144       |
| 146 | The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a<br>High-Mobility n-Type Copolymer. Journal of the American Chemical Society, 2014, 136, 4245-4256.                                    | 13.7 | 226       |
| 147 | Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Materials, 2014, 13, 63-68.                                                                                                            | 27.5 | 667       |
| 148 | <i>In Situ</i> Formation of Heterojunctions in Modified Graphitic Carbon Nitride: Synthesis and Noble<br>Metal Free Photocatalysis. Chemistry of Materials, 2014, 26, 5812-5818.                                                   | 6.7  | 192       |
| 149 | Simultaneous extraction of charge density dependent mobility and variable contact resistance from thin film transistors. Applied Physics Letters, 2014, 104, 193501.                                                               | 3.3  | 37        |
| 150 | Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid<br>Selfâ€Assembled Monolayers. Advanced Functional Materials, 2014, 24, 7014-7024.                                                            | 14.9 | 160       |
| 151 | Efficiency-Limiting Processes in Low-Bandgap Polymer:Perylene Diimide Photovoltaic Blends. Journal of Physical Chemistry C, 2014, 118, 20077-20085.                                                                                | 3.1  | 30        |
| 152 | Liquid-Based Growth of Polymeric Carbon Nitride Layers and Their Use in a Mesostructured Polymer<br>Solar Cell with <i>V</i> <sub>oc</sub> Exceeding 1 V. Journal of the American Chemical Society, 2014,<br>136, 13486-13489.     | 13.7 | 227       |
| 153 | Fullerene-Free Polymer Solar Cells with Highly Reduced Bimolecular Recombination and<br>Field-Independent Charge Carrier Generation. Journal of Physical Chemistry Letters, 2014, 5, 2815-2822.                                    | 4.6  | 42        |
| 154 | Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers. Journal of the American Chemical Society, 2014, 136, 15566-15576.                                                                            | 13.7 | 249       |
| 155 | Inverted organic solar cells comprising low-temperature-processed ZnO films. Applied Physics A:<br>Materials Science and Processing, 2014, 115, 365-369.                                                                           | 2.3  | 10        |
| 156 | Quantifying Charge Extraction in Organic Solar Cells: The Case of Fluorinated PCPDTBT. Journal of<br>Physical Chemistry Letters, 2014, 5, 1131-1138.                                                                               | 4.6  | 88        |
| 157 | Upconversion-Agent Induced Improvement of g-C <sub>3</sub> N <sub>4</sub> Photocatalyst under<br>Visible Light. ACS Applied Materials & Interfaces, 2014, 6, 16481-16486.                                                          | 8.0  | 104       |
| 158 | Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular<br>perylene diimide-based acceptors for all-polymer solar cells and n-type transistors. Polymer<br>Chemistry, 2014, 5, 3404-3411. | 3.9  | 48        |
| 159 | Correlation between the Open Circuit Voltage and the Energetics of Organic Bulk Heterojunction<br>Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 3865-3871.                                                          | 4.6  | 64        |
| 160 | A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein.<br>Journal of Materials Chemistry B, 2013, 1, 6373.                                                                            | 5.8  | 38        |
| 161 | Mobility relaxation and electron trapping in a donor/acceptor copolymer. Physical Review B, 2013, 87, .                                                                                                                            | 3.2  | 51        |
| 162 | Temperatureâ€Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart<br>Polymer and a Conjugated Polyelectrolyte. Macromolecular Chemistry and Physics, 2013, 214, 435-445.                          | 2.2  | 13        |

| #   | Article                                                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | New polymer matrix system for phosphorescent organic lightâ€emitting diodes and the role of the<br>small molecular coâ€host. Journal of Polymer Science Part A, 2013, 51, 601-613.                                                                                                                                                                | 2.3  | 9         |
| 164 | Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors.<br>Nature Communications, 2013, 4, 1588.                                                                                                                                                                                                          | 12.8 | 240       |
| 165 | Comprehensive picture of <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/Math/M&lt;br">display="inline"&gt;<mml:mi>p</mml:mi></mml:math> -type doping of P3HT with the molecular acceptor<br>F <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:msub><mml:mn>4</mml:mn></mml:msub></mml:math> TCNQ. | 3.2  | 302       |
| 166 | Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching. Journal of Materials Chemistry C, 2013, 1, 1943.                                                                                                                                                                                | 5.5  | 61        |
| 167 | Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrroleâ€Based<br>Solutionâ€Processed Small Molecule Solar Cells. Advanced Functional Materials, 2013, 23, 3584-3594.                                                                                                                                                  | 14.9 | 268       |
| 168 | How Do Disorder, Reorganization, and Localization Influence the Hole Mobility in Conjugated Copolymers?. Journal of the American Chemical Society, 2013, 135, 1772-1782.                                                                                                                                                                          | 13.7 | 50        |
| 169 | Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 2013, 135, 7118-7121.                                                                                                                                                                                            | 13.7 | 781       |
| 170 | Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers. Journal of Materials Chemistry C, 2013, 1, 6603.                                                                                                                                                                                          | 5.5  | 31        |
| 171 | Temperature-Regulated Fluorescence and Association of an Oligo(ethyleneglycol)methacrylate-Based<br>Copolymer with a Conjugated Polyelectrolyte—The Effect of Solution Ionic Strength. Journal of<br>Physical Chemistry B, 2013, 117, 14576-14587.                                                                                                | 2.6  | 7         |
| 172 | Full electronic structure across a polymer heterojunction solar cell. Journal of Materials<br>Chemistry, 2012, 22, 4418.                                                                                                                                                                                                                          | 6.7  | 33        |
| 173 | Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for<br>Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 14932-14944.                                                                                                                                         | 13.7 | 361       |
| 174 | Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline<br>Morphology. Journal of the American Chemical Society, 2012, 134, 18303-18317.                                                                                                                                                                 | 13.7 | 395       |
| 175 | Modelling elasticity and memory effects in liquid crystalline elastomers by molecular dynamics simulations. Soft Matter, 2012, 8, 11123.                                                                                                                                                                                                          | 2.7  | 30        |
| 176 | Electrical and optical simulations of a polymerâ€based phosphorescent organic lightâ€emitting diode<br>with high efficiency. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1567-1576.                                                                                                                                            | 2.1  | 14        |
| 177 | Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene). Applied Physics<br>Letters, 2012, 100, .                                                                                                                                                                                                                     | 3.3  | 108       |
| 178 | Solution Processed Organic Tandem Solar Cells. Energy Procedia, 2012, 31, 159-166.                                                                                                                                                                                                                                                                | 1.8  | 7         |
| 179 | Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers<br>prepared via a non-sol–gel approach. Colloid and Polymer Science, 2012, 290, 1843-1854.                                                                                                                                                           | 2.1  | 16        |
| 180 | Control of aggregate formation in poly(3â€hexylthiophene) by solvent, molecular weight, and synthetic<br>method. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 442-453.                                                                                                                                                          | 2.1  | 209       |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PC <sub>70</sub> BM: Influence of Solvent Additives. Journal of Physical Chemistry Letters, 2012, 3, 640-645.             | 4.6  | 153       |
| 182 | Influence of Aggregation on the Performance of Allâ€Polymer Solar Cells Containing Lowâ€Bandgap<br>Naphthalenediimide Copolymers. Advanced Energy Materials, 2012, 2, 369-380.                                             | 19.5 | 316       |
| 183 | Light management in PCPDTBT:PC70BM solar cells: A comparison of standard and inverted device structures. Organic Electronics, 2012, 13, 615-622.                                                                           | 2.6  | 78        |
| 184 | Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. Macromolecules, 2011, 44, 5246-5255.                                                                | 4.8  | 278       |
| 185 | Band Bending in Conjugated Polymer Layers. Physical Review Letters, 2011, 106, 216402.                                                                                                                                     | 7.8  | 188       |
| 186 | Photogeneration and Recombination in P3HT/PCBM Solar Cells Probed by Time-Delayed Collection Field Experiments. Journal of Physical Chemistry Letters, 2011, 2, 700-705.                                                   | 4.6  | 183       |
| 187 | Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Physical Review B, 2011, 84, .                                                                                | 3.2  | 338       |
| 188 | Highâ€Resolution Nearâ€Field Optical Investigation of Crystalline Domains in Oligomeric PQTâ€12 Thin Films.<br>Advanced Functional Materials, 2011, 21, 860-868.                                                           | 14.9 | 19        |
| 189 | Quantitative Analysis of Bulk Heterojunction Films Using Linear Absorption Spectroscopy and Solar<br>Cell Performance. Advanced Functional Materials, 2011, 21, 4640-4652.                                                 | 14.9 | 137       |
| 190 | Temperatureâ€Resolved Local and Macroscopic Charge Carrier Transport in Thin P3HT Layers. Advanced<br>Functional Materials, 2010, 20, 2286-2295.                                                                           | 14.9 | 131       |
| 191 | Bulk Electron Transport and Charge Injection in a High Mobility nâ€Type Semiconducting Polymer.<br>Advanced Materials, 2010, 22, 2799-2803.                                                                                | 21.0 | 145       |
| 192 | The Relationship between the Electric Field-Induced Dissociation of Charge Transfer Excitons and the<br>Photocurrent in Small Molecular/Polymeric Solar Cells. Journal of Physical Chemistry Letters, 2010, 1,<br>982-986. | 4.6  | 50        |
| 193 | Molecular dynamics simulations of photo-induced deformations in azobenzene-containing polymers. , 2009, , .                                                                                                                |      | 1         |
| 194 | Reliable electron-only devices and electron transport in n-type polymers. Journal of Applied Physics, 2009, 105, .                                                                                                         | 2.5  | 67        |
| 195 | Relationship of Photophysical Properties and the Device Performance of Novel Hybrid<br>Smallâ€Molecular/Polymeric Solar Cells. Macromolecular Rapid Communications, 2009, 30, 1263-1268.                                   | 3.9  | 10        |
| 196 | Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene<br>fraction with low polydispersity. Applied Physics A: Materials Science and Processing, 2009, 95, 67-72.                 | 2.3  | 38        |
| 197 | Charge transport and recombination in bulk heterojunction solar cells containing a<br>dicyanoimidazoleâ€based molecular acceptor. Physica Status Solidi (A) Applications and Materials<br>Science, 2009, 206, 2743-2749.   | 1.8  | 10        |
| 198 | Bimodal Temperature Behavior of Structure and Mobility in High Molecular Weight P3HT Thin Films.<br>Macromolecules, 2009, 42, 4651-4660.                                                                                   | 4.8  | 102       |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Polymers films with indandione derivatives as alternatives to azobenzene polymers for optical patterning. Thin Solid Films, 2008, 516, 8893-8898.                                                               | 1.8  | 10        |
| 200 | Alternating fluoreneâ€di(thiophene)quinoxaline copolymers <i>via</i> microwaveâ€supported suzuki<br>crossâ€coupling reactions. Journal of Polymer Science Part A, 2008, 46, 7794-7808.                          | 2.3  | 48        |
| 201 | Organic transistors utilising highly soluble swivelâ€cruciform oligothiophenes. Physica Status Solidi<br>(A) Applications and Materials Science, 2008, 205, 440-448.                                            | 1.8  | 7         |
| 202 | Tuning of the Excited-State Properties and Photovoltaic Performance in PPV-Based Polymer Blends.<br>Journal of Physical Chemistry C, 2008, 112, 14607-14617.                                                    | 3.1  | 33        |
| 203 | Energy and charge transfer in blends of dendronized perylenes with polyfluorene. Journal of Chemical Physics, 2008, 129, 114901.                                                                                | 3.0  | 16        |
| 204 | Thickness Dependence of the Crystalline Structure and Hole Mobility in Thin Films of Low Molecular<br>Weight Poly(3-hexylthiophene). Macromolecules, 2008, 41, 6800-6808.                                       | 4.8  | 114       |
| 205 | The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. Journal of Applied Physics, 2008, 104, .                        | 2.5  | 29        |
| 206 | Efficient Red-Emitting Electrophosphorescent Polymers. Chemistry of Materials, 2008, 20, 1629-1635.                                                                                                             | 6.7  | 47        |
| 207 | Charge carrier generation and electron blocking at interlayers in polymer solar cells. Applied Physics<br>Letters, 2007, 90, 133502.                                                                            | 3.3  | 29        |
| 208 | Sensing electron transport in a blue-emitting copolymer by transient electroluminescence. Applied Physics Letters, 2007, 91, 143516.                                                                            | 3.3  | 11        |
| 209 | Organic Field-Effect Transistors Utilizing Solution-Deposited Oligothiophene-Based Swivel<br>Cruciforms. Chemistry of Materials, 2007, 19, 1267-1276.                                                           | 6.7  | 30        |
| 210 | Structure and internal dynamics of a side chain liquid crystalline polymer in various phases by molecular dynamics simulations: A step towards coarse graining. Journal of Chemical Physics, 2007, 126, 174905. | 3.0  | 21        |
| 211 | Efficient White-Electrophosphorescent Devices Based on a Single Polyfluorene Copolymer. Advanced<br>Functional Materials, 2007, 17, 1085-1092.                                                                  | 14.9 | 110       |
| 212 | Localized Charge Transfer in a Molecularly Doped Conducting Polymer. Advanced Materials, 2007, 19, 3257-3260.                                                                                                   | 21.0 | 152       |
| 213 | Phase Separation of Binary Blends in Polymer Nanoparticles. Small, 2007, 3, 1041-1048.                                                                                                                          | 10.0 | 96        |
| 214 | Solution Processable Organic Field-Effect Transistors Utilizing an α,αâ€~-Dihexylpentathiophene-Based<br>Swivel Cruciform. Journal of the American Chemical Society, 2006, 128, 3914-3915.                      | 13.7 | 111       |
| 215 | Swivel-cruciform oligothiophene dimers. Journal of Materials Chemistry, 2006, 16, 3177.                                                                                                                         | 6.7  | 92        |
| 216 | Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene).<br>Macromolecules, 2006, 39, 2162-2171.                                                                                | 4.8  | 385       |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Comparative Study of M3EHâ^'PPV-Based Bilayer Photovoltaic Devices. Macromolecules, 2006, 39, 4018-4022.                                                                                                        | 4.8  | 85        |
| 218 | Efficient Polymer Electrophosphorescent Devices with Interfacial Layers. Advanced Functional Materials, 2006, 16, 2156-2162.                                                                                    | 14.9 | 61        |
| 219 | Highly Efficient Polymeric Electrophosphorescent Diodes. Advanced Materials, 2006, 18, 948-954.                                                                                                                 | 21.0 | 338       |
| 220 | Molecular tracer diffusion in thin azobenzene polymer layers. Applied Physics Letters, 2006, 89, 251902.                                                                                                        | 3.3  | 25        |
| 221 | Improving the Performance of Organic Field Effect Transistor by Optimizing the Gate Insulator Surface. Japanese Journal of Applied Physics, 2005, 44, 3721-3727.                                                | 1.5  | 33        |
| 222 | Exciton dynamics in ladder-type methyl-poly(para-phenylene) doped with phosphorescent dyes. Journal of Luminescence, 2005, 112, 377-380.                                                                        | 3.1  | 1         |
| 223 | From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature<br>Materials, 2005, 4, 699-703.                                                                                      | 27.5 | 258       |
| 224 | Efficient Polymer Solar Cells Based on M3EHâ^'PPV. Chemistry of Materials, 2005, 17, 6532-6537.                                                                                                                 | 6.7  | 207       |
| 225 | Diyne-Containing PPVs:  Solid-State Properties and Comparison of Their Photophysical and<br>Electrochemical Properties with Those of Their Yne-Containing Counterparts. Macromolecules, 2005,<br>38, 6269-6275. | 4.8  | 29        |
| 226 | Comparative Study of the Field-Effect Mobility of a Copolymer and a Binary Blend Based on<br>Poly(3-alkylthiophene)s. Chemistry of Materials, 2005, 17, 781-786.                                                | 6.7  | 61        |
| 227 | Dielectric and Mechanical Properties of Azobenzene Polymer Layers under Visible and Ultraviolet<br>Irradiation. Macromolecules, 2005, 38, 3894-3902.                                                            | 4.8  | 71        |
| 228 | Oddâ^'Even Effects and the Influence of Length and Specific Positioning of Alkoxy Side Chains on the Optical Properties of PPEâ^'PPV Polymers. Chemistry of Materials, 2005, 17, 6022-6032.                     | 6.7  | 49        |
| 229 | Thermodynamic Theory of Light-Induced Material Transport in Amorphous Azobenzene Polymer Films.<br>Journal of Physical Chemistry B, 2005, 109, 19428-19436.                                                     | 2.6  | 73        |
| 230 | Probing the local optical properties of layers prepared from polymer nanoparticles. Synthetic Metals, 2005, 152, 101-104.                                                                                       | 3.9  | 17        |
| 231 | Sensitized phosphorescence of benzil-doped ladder-type methyl-poly(para-phenylene). Journal of<br>Chemical Physics, 2004, 121, 9178-9183.                                                                       | 3.0  | 12        |
| 232 | Suppression of the Keto-Emission in Polyfluorene Light-Emitting Diodes: Experiments and Models.<br>Advanced Functional Materials, 2004, 14, 1097-1104.                                                          | 14.9 | 47        |
| 233 | Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic<br>Field-Effect Transistors. Advanced Functional Materials, 2004, 14, 757-764.                                | 14.9 | 648       |
| 234 | Highly Efficient Single-Layer Polymer Electrophosphorescent Devices. Advanced Materials, 2004, 16,<br>161-166.                                                                                                  | 21.0 | 217       |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Energy transfer in a ladder-type methyl-poly(para-phenylene) doped by Pt(II)octaethylporphyrin.<br>Chemical Physics, 2004, 299, 11-16.                                                | 1.9  | 24        |
| 236 | Dendronized Perylene Diimide Emitters:Â Synthesis, Luminescence, and Electron and Energy Transfer<br>Studies. Macromolecules, 2004, 37, 8297-8306.                                    | 4.8  | 106       |
| 237 | A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices.<br>Macromolecules, 2004, 37, 4882-4890.                                                 | 4.8  | 144       |
| 238 | Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite. Physical<br>Review B, 2004, 69, .                                                                | 3.2  | 26        |
| 239 | Polymer electrophosphorescence devices with high power conversion efficiencies. Applied Physics Letters, 2004, 84, 2476-2478.                                                         | 3.3  | 145       |
| 240 | Synthesis, Characterization, and Photophysical, Electrochemical, Electroluminescent, and<br>Photovoltaic Properties of Yne-Containing CNâ^'PPVs. Macromolecules, 2004, 37, 8863-8873. | 4.8  | 62        |
| 241 | Materials for polymer electronics applications– semiconducting polymer thin films and nanoparticles. Macromolecular Symposia, 2004, 212, 83-92.                                       | 0.7  | 14        |
| 242 | Organic Light-Emitting Devices Fabricated from Semiconducting Nanospheres. Advanced Materials, 2003, 15, 800-804.                                                                     | 21.0 | 115       |
| 243 | Thermoluminescence and electroluminescence of annealed polyfluorene layers. Chemical Physics Letters, 2003, 371, 15-22.                                                               | 2.6  | 29        |
| 244 | Novel approaches to polymer blends based on polymer nanoparticles. Nature Materials, 2003, 2, 408-412.                                                                                | 27.5 | 394       |
| 245 | Polymer electrophosphorescent devices utilizing a ladder-type poly(para-phenylene) host. Journal of<br>Applied Physics, 2003, 93, 4413-4419.                                          | 2.5  | 29        |
| 246 | Polymer light emitting diodes based on LiF/Al composite cathode. Synthetic Metals, 2003, 137, 1503-1504.                                                                              | 3.9  | 1         |
| 247 | On the polarization of the green emission of polyfluorenes. Journal of Chemical Physics, 2003, 119, 6832-6839.                                                                        | 3.0  | 26        |
| 248 | Electronic transport in monolayers of phthalocyanine polymers. Nanotechnology, 2003, 14, 1043-1050.                                                                                   | 2.6  | 5         |
| 249 | Photoaddressable polymers for liquid crystal alignment. Liquid Crystals, 2003, 30, 337-344.                                                                                           | 2.2  | 9         |
| 250 | Comparison of the birefringence in an azobenzene-side-chain copolymer induced by pulsed and continuous-wave irradiation. Applied Physics Letters, 2002, 81, 1228-1230.                | 3.3  | 28        |
| 251 | Polarization-sensitive photoconductivity in aligned polyfluorene layers. Applied Physics Letters, 2002, 80, 4699-4701.                                                                | 3.3  | 27        |
| 252 | Organic Light Emitting Devices Fabricated from Semiconducting Nanospheres. Materials Research<br>Society Symposia Proceedings, 2002, 738, 8101.                                       | 0.1  | 0         |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Chiroptical Properties of Poly(p-phenyleneethynylene) Copolymers in Thin Films:Â Largeg-Values.<br>Journal of the American Chemical Society, 2002, 124, 6830-6831.                      | 13.7 | 148       |
| 254 | Elastic Properties of Well-Defined, High-Density Poly(methyl methacrylate) Brushes Studied by<br>Electromechanical Interferometry. Macromolecules, 2002, 35, 9459-9465.                 | 4.8  | 40        |
| 255 | Chiroptical Properties of Chiral Substituted Polyfluorenes. Macromolecules, 2002, 35, 6792-6798.                                                                                        | 4.8  | 147       |
| 256 | Efficient polarized light-emitting diodes utilizing ultrathin photoaddressable alignment layers.<br>Applied Physics Letters, 2002, 81, 2319-2321.                                       | 3.3  | 30        |
| 257 | Optically driven diffusion and mechanical softening in azobenzene polymer layers. Applied Physics<br>Letters, 2002, 81, 4715-4717.                                                      | 3.3  | 43        |
| 258 | Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process.<br>Advanced Materials, 2002, 14, 651-655.                                                  | 21.0 | 341       |
| 259 | An Investigation of the Photoinduced Changes of Absorption of High-Performance Photoaddressable<br>Polymers. ChemPhysChem, 2002, 3, 335-342.                                            | 2.1  | 6         |
| 260 | Photoaddressable Alignment Layers for Fluorescent Polymers in Polarized Electroluminescence<br>Devices. Advanced Functional Materials, 2002, 12, 49.                                    | 14.9 | 97        |
| 261 | Influence of the dopant concentration on the morphology of hole-transporting alignment layers based on a polyimide matrix. Polymer, 2002, 43, 5235-5242.                                | 3.8  | 16        |
| 262 | Blue Solid-State Photoluminescence and Electroluminescence from Novel<br>Poly(para-phenyleneethynylene) Copolymers. Chemistry of Materials, 2001, 13, 2691-2696.                        | 6.7  | 73        |
| 263 | Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromolecular Rapid Communications, 2001, 22, 1365-1385. | 3.9  | 813       |
| 264 | Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping.<br>Advanced Materials, 2001, 13, 565-570.                                                | 21.0 | 360       |
| 265 | A Compact Device for the Efficient, Electrically Driven Generation of Highly Circularly Polarized<br>Light. Advanced Materials, 2001, 13, 577-580.                                      | 21.0 | 102       |
| 266 | Electrodeless Measurement of the In-Plane Anisotropy in the Photoconductivity of an Aligned<br>Polyfluorene Film. Advanced Materials, 2001, 13, 1627-1630.                              | 21.0 | 35        |
| 267 | Liquid crystalline polyfluorenes for blue polarized electroluminescence. Macromolecular Symposia, 2000, 154, 139-148.                                                                   | 0.7  | 44        |
| 268 | Circularly Polarized Electroluminescence from Liquid-Crystalline Chiral Polyfluorenes. Advanced<br>Materials, 2000, 12, 362-365.                                                        | 21.0 | 283       |
| 269 | Polarized Photoluminescence and Spectral Narrowing in an Oriented Polyfluorene Thin Film.<br>ChemPhysChem, 2000, 1, 142-146.                                                            | 2.1  | 15        |
| 270 | Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes.<br>Nature, 2000, 405, 661-665.                                                       | 27.8 | 534       |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Light-induced softening of azobenzene dye-doped polymer films probed with quartz crystal resonators. Applied Physics Letters, 2000, 77, 963.                                                                              | 3.3  | 55        |
| 272 | Control of color and efficiency of light-emitting diodes based on polyfluorenes blended with hole-transporting molecules. Applied Physics Letters, 2000, 76, 1810-1812.                                                   | 3.3  | 189       |
| 273 | Capacitive scanning dilatometry and frequency-dependent thermal expansion of polymer films.<br>Physical Review E, 2000, 61, 1755-1764.                                                                                    | 2.1  | 76        |
| 274 | Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials. Physical Review B, 2000, 61, 13515-13527.                                                              | 3.2  | 77        |
| 275 | Interplay of Thermochromicity and Liquid Crystalline Behavior in Poly(p-phenyleneethynylene)s: ï€â~'ï€<br>Interactions or Planarization of the Conjugated Backbone?. Macromolecules, 2000, 33, 652-654.                   | 4.8  | 195       |
| 276 | Layer-Thinning Effects on Ferroelectricity and the Ferroelectric-to-Paraelectric Phase Transition of Vinylidene Fluorideâ^'Trifluoroethylene Copolymer Layers. Macromolecules, 2000, 33, 8269-8279.                       | 4.8  | 53        |
| 277 | Ordering, Graphoepitaxial Orientation, and Conformation of a Polyfluorene Derivative of the<br>"Hairy-Rod―Type on an Oriented Substrate of Polyimide. Macromolecules, 2000, 33, 4490-4495.                                | 4.8  | 145       |
| 278 | Efficient bulk photogeneration of charge carriers and photoconductivity gain in arylamino-PPV polymer sandwich cells. Physical Review B, 1999, 59, 1964-1972.                                                             | 3.2  | 39        |
| 279 | The effect of hole traps on the performance of single layer polymer light emitting diodes. Optical<br>Materials, 1999, 12, 387-390.                                                                                       | 3.6  | 7         |
| 280 | Photogeneration of charge carriers in segmented arylamino-PPV derivatives. Optical Materials, 1999, 12, 373-378.                                                                                                          | 3.6  | 1         |
| 281 | Influence of Glass-Transition Temperature and Chromophore Content on the Steady-State<br>Performance of Poly(N-vinylcarbazole)-Based Photorefractive Polymers. Advanced Materials, 1999, 11,<br>123-127.                  | 21.0 | 53        |
| 282 | Blue Polarized Electroluminescence from a Liquid Crystalline Polyfluorene. Advanced Materials, 1999,<br>11, 671-675.                                                                                                      | 21.0 | 387       |
| 283 | Electric Field and Wavelength Dependence of Charge Carrier Photogeneration in Soluble<br>Poly(p-phenylenevinylene) Derivatives. Advanced Materials, 1999, 11, 1274-1277.                                                  | 21.0 | 18        |
| 284 | Mechanism of Charge Transport in Anisotropic Layers of a Phthalocyanine Polymer. Journal of<br>Physical Chemistry B, 1999, 103, 3179-3186.                                                                                | 2.6  | 26        |
| 285 | Investigations of ferroelectric-to-paraelectric phase transition of vinylidenefluoride<br>trifluoroethylene copolymer thin films by electromechanical interferometry. Journal of Applied<br>Physics, 1999, 86, 6367-6375. | 2.5  | 12        |
| 286 | Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2. Journal of Applied Physics, 1999, 86, 6915-6923.                                                     | 2.5  | 45        |
| 287 | Film formation of heterogeneous latex systems—a comparative study by mechanical testing, electron<br>microscopy, interferometry and solid state NMR. Physical Chemistry Chemical Physics, 1999, 1,<br>3871-3878.          | 2.8  | 5         |
| 288 | On the solid state aggregation of chiral substituted poly(para-phenylene)s (PPPs). Synthetic Metals, 1999, 102, 1457-1458.                                                                                                | 3.9  | 21        |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Optical Anisotropy in Films of Photoaddressable Polymers. Macromolecules, 1999, 32, 8496-8503.                                                                                              | 4.8  | 79        |
| 290 | Orientation and Dynamics of Chainlike Dipole Arrays:Â Donorâ^'Acceptor-Substituted<br>Oligophenylenevinylenes in a Polymer Matrix. Macromolecules, 1999, 32, 8551-8559.                     | 4.8  | 6         |
| 291 | Conductivity Measurements of Electrochemically Oxidized Langmuirâ^'Blodgett Films of<br>Phthalocyaninatoâ^'Polysiloxane. Journal of Physical Chemistry B, 1999, 103, 6858-6862.             | 2.6  | 2         |
| 292 | Assignment of the Optical Transitions in 1,3-Diethynylcyclobutadiene(cyclopentadienyl)cobalt<br>Oligomers. Journal of Physical Chemistry B, 1999, 103, 10335-10337.                         | 2.6  | 3         |
| 293 | Controlled Mineralization and Assembly of Hydrolysis-Based Nanoparticles in Organic Solvents<br>Combining Polymer Micelles and Microwave Techniques. Advanced Materials, 1998, 10, 473-475. | 21.0 | 67        |
| 294 | Blue Light-Emitting Devices Based on Novel Polymer Blends. Advanced Materials, 1998, 10, 676-680.                                                                                           | 21.0 | 31        |
| 295 | Light-emitting devices based on solid electrolytes and polyelectrolytes. Polymers for Advanced Technologies, 1998, 9, 461-475.                                                              | 3.2  | 29        |
| 296 | Electric field-induced fluorescence quenching and transient fluorescence studies in poly(p-terphenylene vinylene) related polymers. Chemical Physics, 1998, 227, 167-178.                   | 1.9  | 39        |
| 297 | Electrical Conductivity of Highly Organized Langmuirâ^'Blodgett Films of<br>Phthalocyaninato-Polysiloxane. Chemistry of Materials, 1998, 10, 2284-2292.                                     | 6.7  | 40        |
| 298 | Electromechanical Properties of an Ultrathin Layer of Directionally Aligned Helical Polypeptides.<br>Science, 1998, 279, 57-60.                                                             | 12.6 | 119       |
| 299 | Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline<br>titanium dioxide. Applied Physics Letters, 1998, 72, 650-652.                              | 3.3  | 34        |
| 300 | Photogeneration of charge carriers in anisotropic multilayer structures of phthalocyaninato-polysiloxane. Journal of Applied Physics, 1998, 84, 3731-3740.                                  | 2.5  | 5         |
| 301 | Electronic properties of soluble poly(paraphenylene) derivatives. Synthetic Metals, 1997, 84, 645-646.                                                                                      | 3.9  | 48        |
| 302 | Microcavity optical mode structure measurements via absorption and emission of polymer thin films.<br>Synthetic Metals, 1997, 84, 887-888.                                                  | 3.9  | 3         |
| 303 | Measurements of optical electric field intensities in microcavities using thin emissive polymer films.<br>Advanced Materials, 1997, 9, 395-398.                                             | 21.0 | 27        |
| 304 | Direct determination of the emission zone in a polymer light-emitting diode. Advanced Materials, 1997,<br>9, 964-968.                                                                       | 21.0 | 65        |
| 305 | Photo-cross-linkable poly(p-phenylene)s. Synthesis, Langmuir-Blodgett multilayer film properties and pattern formation. Macromolecular Chemistry and Physics, 1997, 198, 2551-2561.         | 2.2  | 19        |
| 306 | Narrow-band emissions from conjugated-polymer films. Chemical Physics Letters, 1997, 265, 320-326.                                                                                          | 2.6  | 75        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Direct measurement of the dipole moment of a metastable merocyanine by electromechanical interferometry. Chemical Physics Letters, 1997, 277, 118-124.                                                                 | 2.6  | 32        |
| 308 | Rigid-Rod-Like Main Chain Polymers with Rigidly Attached Chromophores:Â A Novel Structural Concept<br>for Electrooptical Materials. 2. Theory and Electrooptical Measurements. Macromolecules, 1996, 29,<br>4697-4705. | 4.8  | 9         |
| 309 | The Optical, Electronic, and Electroluminescent Properties of Novel Poly(p-phenylene)-Related<br>Polymers. Macromolecules, 1996, 29, 7432-7445.                                                                        | 4.8  | 87        |
| 310 | Microcavity effects in singleâ€layer lightâ€emitting devices based on poly(pâ€phenylene vinylene). Journal of<br>Applied Physics, 1996, 79, 3299-3306.                                                                 | 2.5  | 75        |
| 311 | Investigations of the Viscoelastic Properties of Thin Polymer Films by Electromechanical<br>Interferometry. Macromolecules, 1996, 29, 6865-6871.                                                                       | 4.8  | 25        |
| 312 | Anomalous electrical characteristics, memory phenomena and microcavity effects in polymeric light-emitting diodes. Synthetic Metals, 1996, 76, 125-128.                                                                | 3.9  | 46        |
| 313 | Photoconductivity in Langmuir—Blodgett multilayer structures of phthalocyaninato-polysiloxane.<br>Synthetic Metals, 1996, 83, 245-247.                                                                                 | 3.9  | 13        |
| 314 | Synthesis and electroluminescent properties of quaterphenyl and sexiphenyl containing copolymers.<br>Macromolecular Chemistry and Physics, 1996, 197, 2511-2519.                                                       | 2.2  | 20        |
| 315 | Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique. Advanced Materials, 1996, 8, 146-149.                                                                                                  | 21.0 | 252       |
| 316 | Efficient blue light emitting devices based on rigid-rod polyelectrolytes. Advanced Materials, 1996, 8,<br>585-588.                                                                                                    | 21.0 | 90        |
| 317 | Structure-fluorescence properties of some naphthoylene-benzimidazole-based Langmuir-Blodgett films. Thin Solid Films, 1996, 287, 232-236.                                                                              | 1.8  | 4         |
| 318 | Microcavity devices based on a ladderâ€type poly(pâ€phenylene) emitting blue, green, and red light. Applied<br>Physics Letters, 1996, 69, 608-610.                                                                     | 3.3  | 57        |
| 319 | Substituted Rigid Rod-Like Polymers—Building Blocks for Photonic Devices. Advanced Materials, 1995,<br>7, 691-702.                                                                                                     | 21.0 | 70        |
| 320 | Synthesis and spectroscopic properties of phthalocyanine dimers in solution. Chemical Physics Letters, 1995, 245, 23-29.                                                                                               | 2.6  | 52        |
| 321 | Dispersion of the electro-optical response in poled polymer films determined by Stark spectroscopy.<br>Thin Solid Films, 1995, 261, 241-247.                                                                           | 1.8  | 15        |
| 322 | Relaxation of Polar Order in Poled Polymer Systems: A Comparison between an Isothermal and a<br>Thermally Stimulated Experiment. Macromolecules, 1995, 28, 2882-2885.                                                  | 4.8  | 19        |
| 323 | Piezoelectricity and electrostriction of dyeâ€doped polymer electrets. Applied Physics Letters, 1994, 64, 1347-1349.                                                                                                   | 3.3  | 53        |
| 324 | Synthesis and Properties of Aromatic Main-Chain Polyesters Having Disperse Red 1 Nonlinear Optical<br>Chromophores in the Side Chain. Chemistry of Materials, 1994, 6, 2159-2166.                                      | 6.7  | 27        |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Rigid Rodlike Main Chain Polymers with Conformationally Restricted Nonlinear Optical Chromophores: Synthesis and Properties. Macromolecules, 1994, 27, 6156-6162.                            | 4.8  | 17        |
| 326 | Determination of the two first non-trivial orientational order parameters in LB films of rod-like molecules by third-order sum frequency mixing. Chemical Physics Letters, 1993, 202, 44-50. | 2.6  | 5         |
| 327 | Nonlinear optical probes of conjugated polymers. Synthetic Metals, 1992, 49, 21-35.                                                                                                          | 3.9  | 8         |
| 328 | Nonlinear optical response of C_60 and C_70. Optics Letters, 1992, 17, 1491.                                                                                                                 | 3.3  | 73        |
| 329 | Side-chain dilution effects on the optical properties of poly[3-alkylthiophene]s. Optical Materials, 1992, 1, 65-70.                                                                         | 3.6  | 26        |
| 330 | Polarization dependent resonant THG on Langmuir—Blodgett multilayers of rod-like polysilanes<br>during annealing. Chemical Physics, 1992, 161, 289-297.                                      | 1.9  | 14        |
| 331 | Donor-acceptor substituted polyenes: Orientation in mono- and multilayers. Advanced Materials, 1992, 4, 413-416.                                                                             | 21.0 | 4         |
| 332 | Preparation of oriented multilayers of poly(silanes) by the Langmuir-Blodgett technique.<br>Macromolecules, 1991, 24, 5068-5075.                                                             | 4.8  | 95        |
| 333 | Amphiphilic dyes for NLO in LBâ€films. Makromolekulare Chemie Macromolecular Symposia, 1991, 46,<br>205-210.                                                                                 | 0.6  | 1         |
| 334 | Amphiphilic dyes for nonlinear optics: Dependence of second harmonic generation on functional group substitution. Advanced Materials, 1991, 3, 54-58.                                        | 21.0 | 51        |
| 335 | Linear and non-linear optical properties of substituted polyphenylacetylene thin films. Journal Physics<br>D: Applied Physics, 1991, 24, 1193-1202.                                          | 2.8  | 46        |
| 336 | Nonlinear optical properties of thin organic films. Makromolekulare Chemie Macromolecular<br>Symposia, 1990, 37, 239-245.                                                                    | 0.6  | 2         |
| 337 | Dispersion measurements of the third-order nonlinear susceptibility of polythiophene thin films.<br>Chemical Physics Letters, 1990, 175, 11-16.                                              | 2.6  | 100       |
| 338 | Optical third-harmonic generation in substituted poly(phenylacetylenes) and poly(3-decylthiophenes).<br>Synthetic Metals, 1990, 37, 249-253.                                                 | 3.9  | 33        |
| 339 | Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films. Chemical Physics Letters, 1989, 163, 116-122.                | 2.6  | 170       |
| 340 | Inverse piezoelectricity of porous PTFE films with bipolar space charge. , 0, , .                                                                                                            |      | 3         |
| 341 | Organic Transistors Utilising Highly Soluble Swivel-Cruciform Oligothiophenes. , 0, , 95-111.                                                                                                |      | 0         |
| 342 | Hybrid Multilayer Design for Efficient Perovskite-based Solar Cells. , 0, , .                                                                                                                |      | 0         |

| #   | ARTICLE                                                                                                                                            | IF | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 343 | Transport Layers Limit the Efficiency of Perovskite Solar Cells: an Experimental and Theoretical Study<br>, 0, , .                                 |    | Ο         |
| 344 | Photoinduced Halide Segregation and Diffusion in Mixed-halide Perovskite Solar Cells. , 0, , .                                                     |    | 0         |
| 345 | The Efficiency Potential of Perovskite Solar Cells. , 0, , .                                                                                       |    | 0         |
| 346 | Limits of Charge Carrier Transport in Halide Perovskites Revealed by Optical-Pump Terahertz-Probe Spectroscopy. , 0, , .                           |    | 0         |
| 347 | Transport Layers Limit the Efficiency of Perovskite Solar Cells: an Experimental and Theoretical Study<br>, 0, , .                                 |    | Ο         |
| 348 | Organic Solar Cells based on Y-Series Non-Fullerene Acceptors: From Charge Separation to Device Performance. , 0, , .                              |    | 0         |
| 349 | Efficiency Potential and Loss Analysis of Inorganic CsPbI2Br Perovskite Solar Cells. , 0, , .                                                      |    | Ο         |
| 350 | Revealing the Doping Density in Perovskite Solar Cells and Its Impact on Device Performance. , 0, , .                                              |    | 0         |
| 351 | Identifying radiation damage, non-radiative losses, and efficiency potentials of perovskite based tandem PV via subcell characterization. , 0, , . |    | 0         |