Marco Giovanni Enea Righi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7746237/publications.pdf

Version: 2024-02-01

26 papers

874 citations

687363 13 h-index 642732 23 g-index

27 all docs

27 docs citations

times ranked

27

1470 citing authors

#	Article	IF	Citations
1	Monokine production by microglial cell clones. European Journal of Immunology, 1989, 19, 1443-1448.	2.9	355
2	$<$ i>C/EBPÎ $^2<$ /i>Gene Inactivation Causes Both Impaired and Enhanced Gene Expression and Inverse Regulation of IL-12 p40 and p35 mRNAs in Macrophages. Journal of Immunology, 2002, 168, 4055-4062.	0.8	120
3	Remote Origins of Tail-Anchored Proteins. Traffic, 2010, 11, 877-885.	2.7	50
4	Brain angioarchitecture and intussusceptive microvascular growth in a murine model of Krabbe disease. Angiogenesis, 2015, 18, 499-510.	7.2	36
5	Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS. Molecular and Cellular Neurosciences, 2012, 51, 12-21.	2.2	34
6	Sorafenib Inhibits Lymphoma Xenografts by Targeting MAPK/ERK and AKT Pathways in Tumor and Vascular Cells. PLoS ONE, 2013, 8, e61603.	2.5	34
7	DMSO Reduces CSF-1 Receptor Levels and Causes Apoptosis in v-myclmmortalized Mouse Macrophages. Experimental Cell Research, 1998, 243, 94-100.	2.6	33
8	Human CD34+ cells engineered to express membrane-bound tumor necrosis factor–related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood, 2010, 115, 2231-2240.	1.4	32
9	Localization of synaptic proteins involved in neurosecretion in different membrane microdomains. Journal of Neurochemistry, 2007, 100, 664-677.	3.9	29
10	Regeneration-associated WNT Signaling Is Activated in Long-term Reconstituting AC133bright Acute Myeloid Leukemia Cells. Neoplasia, 2012, 14, 1236-IN45.	5.3	26
11	Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 271, 18-29.	2.3	26
12	Cellular Sources and Effects of Tumor Necrosis Factor-? on Pituitary Cells and in the Central Nervous System. Annals of the New York Academy of Sciences, 1990, 594, 156-168.	3.8	21
13	The <i>POF1B < /i> candidate gene for premature ovarian failure regulates epithelial polarity. Journal of Cell Science, 2011, 124, 3356-3368.</i>	2.0	20
14	A computational approach to compare microvessel distributions in tumors following antiangiogenic treatments. Laboratory Investigation, 2009, 89, 1063-1070.	3.7	12
15	D Quantification of Tumor Vasculature in Lymphoma Xenografts in NOD/SCID Mice Allows to Detect Differences among Vascular-Targeted Therapies. PLoS ONE, 2013, 8, e59691.	2.5	9
16	The fifth subunit in $\hat{l}\pm3\hat{l}^24$ nicotinic receptor is more than an accessory subunit. FASEB Journal, 2018, 32, 4190-4202.	0.5	8
17	Identification by monoclonal antibodies of a new epitope in the glycoprotein complex of sindbis virus. Journal of Virological Methods, 1983, 6, 203-214.	2.1	6
18	Quantification of 3D Brain Microangioarchitectures in an Animal Model of Krabbe Disease. International Journal of Molecular Sciences, 2019, 20, 2384.	4.1	6

#	Article	IF	CITATIONS
19	Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34+ cells. Angiogenesis, 2013, 16, 707-722.	7.2	5
20	Vascular amounts and dispersion of caliber-classified vessels as key parameters to quantitate 3D micro-angioarchitectures in multiple myeloma experimental tumors. Scientific Reports, 2018, 8, 17520.	3.3	5
21	\hat{l}^2 -Galactosylceramidase Deficiency Causes Bone Marrow Vascular Defects in an Animal Model of Krabbe Disease. International Journal of Molecular Sciences, 2020, 21, 251.	4.1	5
22	Potato Lipoxygenase: A Molecular Biological Approach. Pharmacological Research, 1993, 27, 17-18.	7.1	1
23	Stimulation of In Vitro Rat Hepatocyte Proliferation by Conditioned Medium Obtained from an Immortalized Macrophage Cell Line. Toxicology in Vitro, 1999, 13, 475-481.	2.4	O
24	Human CD34+ Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Exert a Potent Anti-Lymphoma Effects by Targeting Tumor Vasculature Blood, 2007, 110, 527-527.	1.4	0
25	Preclinical Rationale for the Use of the Multikinase Inhibitor Sorafenib in the Treatment of Human Lymphomas. Blood, 2008, 112, 2605-2605.	1.4	O
26	Quantification of Tumor Vasculature by Analysis of Amount and Spatial Dispersion of Caliber-Classified Vessels. Methods in Molecular Biology, 2021, 2206, 151-178.	0.9	0