James B Skeath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745483/publications.pdf

Version: 2024-02-01

45 papers

2,834 citations

236925 25 h-index 243625 44 g-index

45 all docs 45 docs citations

45 times ranked

2626 citing authors

#	Article	IF	CITATIONS
1	Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature, 1997, 390, 625-629.	27.8	296
2	Genetic control of Drosophila nerve cord development. Current Opinion in Neurobiology, 2003, 13, 8-15.	4.2	247
3	Ajuba LIM Proteins Are Negative Regulators of the Hippo Signaling Pathway. Current Biology, 2010, 20, 657-662.	3.9	240
4	New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mechanisms of Development, 1995, 53, 393-402.	1.7	191
5	At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays, 1999, 21, 922-931.	2.5	149
6	Numb Inhibits Membrane Localization of Sanpodo, a Four-Pass Transmembrane Protein, to Promote Asymmetric Divisions in Drosophila. Developmental Cell, 2003, 5, 231-243.	7.0	149
7	Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. Current Biology, 1998, 8, 807-813.	3.9	137
8	Drosophila Homeodomain Protein dHb9 Directs Neuronal Fate via Crossrepressive and Cell-Nonautonomous Mechanisms. Neuron, 2002, 35, 39-50.	8.1	118
9	Neurogenesis in the insect central nervous system. Current Opinion in Neurobiology, 1996, 6, 18-24.	4.2	106
10	The <i>achaeteâ€scute</i> complex: generation of cellular pattern and fate within the <i>Drosophila</i> nervous system. FASEB Journal, 1994, 8, 714-721.	0.5	102
11	<i>Drosophila</i> Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development (Cambridge), 2001, 128, 4489-4500.	2.5	91
12	Specification of neuroblast identity in the Drosophila embryonic central nervous system by gooseberry-distal. Nature, 1995, 376, 427-430.	27.8	90
13	zfh-1, the <i>Drosophila</i> Homologue of ZEB, Is a Transcriptional Repressor That Regulates Somatic Myogenesis. Molecular and Cellular Biology, 1999, 19, 7255-7263.	2.3	90
14	The achaete–scute complex proneural genes contribute to neural precursor specification in the Drosophila CNS. Current Biology, 1996, 6, 1146-1152.	3.9	71
15	Loss of the Spectraplakin Short Stop Activates the DLK Injury Response Pathway in <i>Drosophila </i> Journal of Neuroscience, 2013, 33, 17863-17873.	3.6	65
16	The Sox-domain containing gene <i>Dichaete/fish-hook</i> acts in concert with <i>vnd</i> and <i>ind</i> to regulate cell fate in the <i>Drosophila</i> neuroectoderm. Development (Cambridge), 2002, 129, 1165-1174.	2.5	64
17	A Requirement for ERK-Dependent Dicer Phosphorylation in Coordinating Oocyte-to-Embryo Transition in C.Âelegans. Developmental Cell, 2014, 31, 614-628.	7.0	63
18	Drosophila homeodomain protein Nkx6 coordinates motoneuron subtype identity and axonogenesis. Development (Cambridge), 2004, 131, 5233-5242.	2.5	56

#	Article	IF	Citations
19	The Tribolium columnar genes reveal conservation and plasticity in neural precursor patterning along the embryonic dorsal–ventral axis. Developmental Biology, 2005, 279, 491-500.	2.0	40
20	<i>dbx</i> mediates neuronal specification and differentiation through cross-repressive, lineage-specific interactions with <i>eve</i> and <i>hb9</i> . Development (Cambridge), 2009, 136, 3257-3266.	2.5	40
21	The extracellular metalloprotease AdamTS-A anchors neural lineages in place within and preserves the architecture of the central nervous system. Development (Cambridge), 2017, 144, 3102-3113.	2.5	39
22	Neural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system. Mechanisms of Development, 1999, 88, 207-219.	1.7	36
23	Molecular Organization of Drosophila Neuroendocrine Cells by Dimmed. Current Biology, 2011, 21, 1515-1524.	3.9	33
24	Cullin-3 regulates pattern formation, external sensory organ development and cell survival during Drosophila development. Mechanisms of Development, 2004, 121, 1495-1507.	1.7	30
25	Biochemical Analysis of Prospero Protein during Asymmetric Cell Division: Cortical Prospero Is Highly Phosphorylated Relative to Nuclear Prospero. Developmental Biology, 1998, 204, 478-487.	2.0	29
26	Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of Nitric oxide synthase and Fd59a/Fox-D. Developmental Biology, 2014, 388, 117-133.	2.0	25
27	The development of normal and ectopic sensilla in the wings of hairy and hairy wing mutants of Drosophila. Mechanisms of Development, 1992, 38, 3-16.	1.7	24
28	Rho1 regulates adherens junction remodeling by promoting recycling endosome formation through activation of myosin II. Molecular Biology of the Cell, 2014, 25, 2956-2969.	2.1	23
29	Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the <i>Drosophila</i> thoracic central nervous system. Development (Cambridge), 2014, 141, 1011-1021.	2.5	21
30	The identification and expression of achaete-scute genes in the branchiopod crustacean Triops longicaudatus. Gene Expression Patterns, 2005, 5, 695-700.	0.8	20
31	Linking pattern formation to cell-type specification: Dichaete and Ind directly repress achaete gene expression in the Drosophila CNS. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3847-3852.	7.1	20
32	Three-dimensional Models of Proteases Involved in Patterning of the Drosophila Embryo. Journal of Biological Chemistry, 2003, 278, 11320-11330.	3.4	19
33	Collaborative Control of Cell Cycle Progression by the RNA Exonuclease Dis3 and Ras Is Conserved Across Species. Genetics, 2016, 203, 749-762.	2.9	19
34	Expression and function of scalloped during <i>Drosophila</i> development. Developmental Dynamics, 2013, 242, 874-885.	1.8	18
35	Rapid generation of hypomorphic mutations. Nature Communications, 2017, 8, 14112.	12.8	15
36	The Drosophila RCC1 homolog, Bj1, regulates nucleocytoplasmic transport and neural differentiation during Drosophila development. Developmental Biology, 2004, 270, 106-121.	2.0	14

#	Article	IF	CITATIONS
37	Deletion of Rb1 induces both hyperproliferation and cell death in murine germinal center B cells. Experimental Hematology, 2016, 44, 161-165.e4.	0.4	9
38	<i>Vestigial</i> expression in the <i>Drosophila</i> embryonic central nervous system. Developmental Dynamics, 2008, 237, 2483-2489.	1.8	8
39	Maintenance of Melanocyte Stem Cell Quiescence by GABA-A Signaling in Larval Zebrafish. Genetics, 2019, 213, 555-566.	2.9	7
40	Tag team specification of a neural precursor in theDrosophila embryonic central nervous system. BioEssays, 1995, 17, 829-831.	2.5	4
41	Homeotic Genes Autonomously Specify the Anteroposterior Subdivision of the Drosophila Dorsal Vessel into Aorta and Heart. Developmental Biology, 2002, 251, 307-307.	2.0	4
42	GABAâ€A receptor and mitochondrial TSPO signaling act in parallel to regulate melanocyte stem cell quiescence in larval zebrafish. Pigment Cell and Melanoma Research, 2020, 33, 416-425.	3.3	4
43	A genetic screen for regulators of muscle morphogenesis in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
44	Helping others enhances graduate student wellness and mental health. Nature Biotechnology, 2022, 40, 618-619.	17.5	3
45	Fluorescein-specific hybridomas derived from primary mice exhibit more stringent growth requirements than do hybrids from pre-immune animals. Journal of Immunological Methods, 1990, 133, 39-45.	1.4	2