
Jean-Baptiste Sortais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coordination Chemistry Reviews, 2022, 458, 214421.	18.8	35
2	Cationic PCP and PCN NHC Core Pincer-Type Mn(I) Complexes: From Synthesis to Catalysis. Organometallics, 2021, 40, 231-241.	2.3	23
3	Experimental and Theoretical Insights into the Electronic Properties of Anionic N-Heterocyclic Dicarbenes through the Rational Synthesis of Their Transition Metal Complexes. Inorganic Chemistry, 2021, 60, 4015-4025.	4.0	11
4	Hydrosilylation Reactions Catalyzed by Rhenium. Molecules, 2021, 26, 2598.	3.8	10
5	Manganese—New prominent actor in transfer hydrogenation catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100511.	5.9	32
6	Manganese and rhenium-catalyzed selective reduction of esters to aldehydes with hydrosilanes. Chemical Communications, 2020, 56, 11617-11620.	4.1	13
7	Asymmetric transfer hydrogenation of ketones promoted by manganese(I) pre-catalysts supported by bidentate aminophosphines. Catalysis Communications, 2020, 142, 106040.	3.3	35
8	Bis[diphenylphosphino]methane and its bridge-substituted analogues as chemically non-innocent ligands for H ₂ activation. Chemical Communications, 2020, 56, 2139-2142.	4.1	15
9	Homogeneous Catalysis is Up for the Challenge. ChemCatChem, 2019, 11, 5158-5159.	3.7	3
10	Rhenium-Catalyzed Reduction of Carboxylic Acids with Hydrosilanes. Organic Letters, 2019, 21, 7713-7716.	4.6	19
11	Manganese catalyzed \hat{I}_{\pm} -methylation of ketones with methanol as a C1 source. Chemical Communications, 2019, 55, 314-317.	4.1	90
12	Manganeseâ€Catalyzed Transfer Hydrogenation of Aldimines. ChemCatChem, 2019, 11, 5256-5259.	3.7	28
13	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie - International Edition, 2019, 58, 6727-6731.	13.8	73
14	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie, 2019, 131, 6799-6803.	2.0	15
15	Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes. ChemSusChem, 2019, 12, 3078-3082.	6.8	41
16	Rhenium and Manganese Complexes Bearing Amino-Bis(phosphinite) Ligands: Synthesis, Characterization, and Catalytic Activity in Hydrogenation of Ketones. Organometallics, 2018, 37, 1271-1279.	2.3	33
17	Hydrogenation of Carbonyl Derivatives Catalysed by Manganese Complexes Bearing Bidentate Pyridinylâ€Phosphine Ligands. Advanced Synthesis and Catalysis, 2018, 360, 676-681.	4.3	66
18	Manganese catalyzed reductive amination of aldehydes using hydrogen as a reductant. Chemical Communications, 2018, 54, 4302-4305.	4.1	74

JEAN-BAPTISTE SORTAIS

#	Article	IF	CITATIONS
19	Practical (asymmetric) transfer hydrogenation of ketones catalyzed by manganese with (chiral) diamines ligands. Catalysis Communications, 2018, 105, 31-36.	3.3	90
20	Selective mono N-methylation of anilines with methanol catalyzed by rhenium complexes: An experimental and theoretical study. Journal of Catalysis, 2018, 366, 300-309.	6.2	58
21	Ironâ€Catalyzed Dehydrogenative Borylation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 3649-3654.	4.3	36
22	Hydrogenation of ketones with a manganese PN3P pincer pre-catalyst. Catalysis Communications, 2017, 92, 1-4.	3.3	112
23	Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex. Journal of Catalysis, 2017, 347, 57-62.	6.2	185
24	Transfer Hydrogenation of Carbonyl Derivatives Catalyzed by an Inexpensive Phosphine-Free Manganese Precatalyst. Organic Letters, 2017, 19, 3656-3659.	4.6	142
25	Ruthenium complexes bearing amino-bis(phosphinite) or amino-bis(aminophosphine) ligands: Application in catalytic ester hydrogenation. Molecular Catalysis, 2017, 432, 15-22.	2.0	8
26	Nâ€Heterocyclic Carbene Iron Silyl Hydride Complexes. Israel Journal of Chemistry, 2017, 57, 1216-1221.	2.3	11
27	Homogeneous Iron Catalysis – Highlights on the Increasing Impact of a Nonâ€Noble Metal. Israel Journal of Chemistry, 2017, 57, 1069-1069.	2.3	5
28	Hydrogenation of Carbonyl Derivatives with a Wellâ€Defined Rhenium Precatalyst. ChemCatChem, 2017, 9, 80-83.	3.7	39
29	Half-Sandwich Manganese Complexes Bearing Cp Tethered N-Heterocyclic Carbene Ligands: Synthesis and Mechanistic Insights into the Catalytic Ketone Hydrosilylation. Organometallics, 2016, 35, 4090-4098.	2.3	62
30	lsing-type Magnetic Anisotropy and Slow Relaxation of the Magnetization in Four-Coordinate Amido-Pyridine Fe ^{II} Complexes. Inorganic Chemistry, 2016, 55, 10968-10977.	4.0	17
31	Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 2016, 7, 12641.	12.8	516
32	Direct synthesis of dicarbonyl PCP-iron hydride complexes and catalytic dehydrogenative borylation of styrene. Dalton Transactions, 2016, 45, 11101-11108.	3.3	29
33	Amine synthesis <i>via</i> transition metal homogeneous catalysed hydrosilylation. RSC Advances, 2016, 6, 57603-57625.	3.6	106
34	1,2,4â€Triazoleâ€Based Nâ€Heterocyclic CarbÂene Nickel Complexes – Synthesis and Catalytic Application. European Journal of Inorganic Chemistry, 2015, 2015, 5226-5231.	2.0	12
35	Ironâ€Catalyzed αâ€Alkylation of Ketones with Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14483-14486.	13.8	230
36	When iron met phosphines: a happy marriage for reduction catalysis. Green Chemistry, 2015, 17, 2283-2303.	9.0	85

JEAN-BAPTISTE SORTAIS

#	Article	IF	CITATIONS
37	Iron-Catalyzed Reduction and Hydroelementation Reactions. Topics in Organometallic Chemistry, 2015, , 173-216.	0.7	25
38	Iron-Catalyzed C–H Borylation of Arenes. Journal of the American Chemical Society, 2015, 137, 4062-4065.	13.7	166
39	Nickel complexes of 1,2,4-triazole derived amido-functionalized N-heterocyclic carbene ligands: Synthesis, theoretical studies and catalytic application. Journal of Organometallic Chemistry, 2015, 786, 63-70.	1.8	22
40	Knölker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides. Organometallics, 2015, 34, 4521-4528.	2.3	56
41	Cationic iron(II) complexes of the mixed cyclopentadienyl (Cp) and the N-heterocyclic carbene (NHC) ligands as effective precatalysts for the hydrosilylation of carbonyl compounds. Journal of Organometallic Chemistry, 2014, 762, 81-87.	1.8	31
42	[(NHC)Fe(CO) ₄] Efficient Pre atalyst for Selective Hydroboration of Alkenes. ChemCatChem, 2014, 6, 763-766.	3.7	70
43	Hydrosilylation of Aldehydes and Ketones Catalyzed by Halfâ€Sandwich Manganese(I) Nâ€Heterocyclic Carbene Complexes. Advanced Synthesis and Catalysis, 2014, 356, 1093-1097.	4.3	82
44	Imidazolidinium ferrate complexes: Synthesis and catalytic properties. Comptes Rendus Chimie, 2014, 17, 541-548.	0.5	3
45	Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. RSC Advances, 2014, 4, 25892.	3.6	25
46	Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chemical Communications, 2014, 50, 14229-14232.	4.1	62
47	Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 2013, 49, 3691.	4.1	64
48	Nickelâ€Catalysed Reductive Amination with Hydrosilanes. ChemCatChem, 2013, 5, 2861-2864.	3.7	34
49	Selective reduction of carboxylic acids to aldehydes through manganese catalysed hydrosilylation. Chemical Communications, 2013, 49, 10010.	4.1	104
50	(Cyclopentadienyl)iron(II) Complexes of N-Heterocyclic Carbenes Bearing a Malonate or Imidate Backbone: Synthesis, Structure, and Catalytic Potential in Hydrosilylation. Organometallics, 2013, 32, 4643-4655.	2.3	67
51	Synthesis of new iron–NHC complexes as catalysts for hydrosilylation reactions. Applied Organometallic Chemistry, 2013, 27, 459-464.	3.5	32
52	Cobalt Carbonylâ€Based Catalyst for Hydrosilylation of Carboxamides. Advanced Synthesis and Catalysis, 2013, 355, 3358-3362.	4.3	70
53	Cyclopentadienyl N-heterocyclic carbene–nickel complexes as efficient pre-catalysts for the hydrosilylation of imines. Catalysis Science and Technology, 2013, 3, 3111.	4.1	41
54	A convenient nickel-catalysed hydrosilylation of carbonyl derivatives. Catalysis Science and Technology, 2013, 3, 81-84.	4.1	34

JEAN-BAPTISTE SORTAIS

#	Article	IF	CITATIONS
55	Nâ€Heterocyclic Carbene Ligands and Iron: An Effective Association for Catalysis. Advanced Synthesis and Catalysis, 2013, 355, 19-33.	4.3	167
56	Chiral Cyclopentadienylâ€ŧype Ligands: a New Breakthrough for Asymmetric CH Functionalisation. ChemCatChem, 2013, 5, 1067-1068.	3.7	9
57	Selective Reduction of Esters to Aldehydes under the Catalysis of Wellâ€Defined NHC–Iron Complexes. Angewandte Chemie - International Edition, 2013, 52, 8045-8049.	13.8	138
58	Iron piano-stool phosphine complexes for catalytic hydrosilylation reaction. Inorganica Chimica Acta, 2012, 380, 301-307.	2.4	49
59	Selective switchable iron-catalyzed hydrosilylation of carboxylic acids. Chemical Communications, 2012, 48, 10514.	4.1	102
60	Hydrosilylation of Aldehydes and Ketones Catalyzed by an Nâ€Heterocyclic Carbeneâ€Nickel Hydride Complex under Mild Conditions. Advanced Synthesis and Catalysis, 2012, 354, 2619-2624.	4.3	96
61	NHC-carbene cyclopentadienyl iron based catalyst for a general and efficient hydrosilylation of imines. Chemical Communications, 2012, 48, 151-153.	4.1	116
62	Synthesis, Characterization, and Fluxional Behavior of a 34 Electron Homochiral Dimetallic Complex with an Unsupported Hydride Bridge between Two Ru Atoms. Organometallics, 2012, 31, 2821-2828.	2.3	3
63	Cyclopentadienyl–NHC Iron Complexes for Solventâ€Free Catalytic Hydrosilylation of Aldehydes and Ketones. European Journal of Inorganic Chemistry, 2012, 2012, 1333-1337.	2.0	95
64	Phosphaneâ€Pyridine Iron Complexes: Synthesis, Characterization and Application in Reductive Amination through the Hydrosilylation Reaction. European Journal of Inorganic Chemistry, 2012, 2012, 3546-3550.	2.0	50
65	Iron atalyzed Hydrosilylation of Esters. Advanced Synthesis and Catalysis, 2012, 354, 1879-1884.	4.3	104
66	Amine Synthesis through Mild Catalytic Hydrosilylation of Imines using Polymethylhydroxysiloxane and [RuCl ₂ (arene)] ₂ Catalysts. ChemSusChem, 2012, 5, 396-399.	6.8	29
67	Alkene Addition of Frustrated P/B and N/B Lewis Pairs at the [3]Ferrocenophane Framework. Organometallics, 2011, 30, 584-594.	2.3	37
68	Wellâ€Ðefined Cyclopentadienyl NHC Iron Complex as the Catalyst for Efficient Hydrosilylation of Amides to Amines and Nitriles. ChemCatChem, 2011, 3, 1747-1750.	3.7	136
69	Iron Dihydride Complex as the Preâ€catalyst for Efficient Hydrosilylation of Aldehydes and Ketones Under Visible Light Activation. Advanced Synthesis and Catalysis, 2011, 353, 1279-1284.	4.3	89
70	Nâ€Heterocyclic Carbene Piano‣tool Iron Complexes as Efficient Catalysts for Hydrosilylation of Carbonyl Derivatives. Advanced Synthesis and Catalysis, 2011, 353, 239-244.	4.3	113
71	Cyclometalated Complexes of Ruthenium, Rhodium and Iridium as Catalysts for Transfer Hydrogenation of Ketones and Imines. Advanced Synthesis and Catalysis, 2011, 353, 2844-2852.	4.3	70
72	Cycloruthenated complexes as homogeneous catalysts for atom-transfer radical additions. Tetrahedron Letters, 2010, 51, 822-825.	1.4	9

#	Article	IF	CITATIONS
73	Cyclen-catalyzed Henry reaction under neutral conditions. Tetrahedron Letters, 2010, 51, 4555-4557.	1.4	15
74	A Chemoenzymatic Approach to Enantiomerically Pure Amines Using Dynamic Kinetic Resolution: Application to the Synthesis of Norsertraline. Chemistry - A European Journal, 2009, 15, 3403-3410.	3.3	142
75	Cycloruthenated Compounds – Synthesis and Applications. European Journal of Inorganic Chemistry, 2009, 2009, 817-853.	2.0	208
76	1,2-Olefin addition of a frustrated amine–borane Lewis pair. Chemical Communications, 2009, , 7417.	4.1	53
77	Kinetics and Mechanism of Ruthenacycle-Catalyzed Asymmetric Hydrogen Transfer. Organometallics, 2008, 27, 5852-5859.	2.3	40
78	μ ₃ -Carbonato-κ ³ <i>O</i> : <i>O</i> ′: <i>O</i> ′: <i>O</i> ′′-tris{(Î- ⁶ -benzen hexafluoridophosphate dichloromethane solvate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m483-m484.	ie)[(<i>R< 0.2</i>	/i>)-1-(1-amin 2
79	Cyclometalation of Primary Benzyl Amines by Ruthenium(II), Rhodium(III), and Iridium(III) Complexes. Organometallics, 2007, 26, 1856-1867.	2.3	76
80	Cyclometalation of Secondary Benzyl Amines by Ruthenium(II) Complexes. Organometallics, 2007, 26, 1868-1874.	2.3	29
81	Nitrogen-containing xanthene-based chiral ligands: Synthesis, NMR and X-ray analyses, and catalytic applications of their palladium, silver and rhodium complexes. Polyhedron, 2006, 25, 3349-3365.	2.2	6
82	Cycloruthenated compounds as efficient catalyst for asymmetric hydride transfer reaction. Pure and Applied Chemistry, 2006, 78, 457-462.	1.9	25
83	Cycloruthenated Primary and Secondary Amines as Efficient Catalyst Precursors for Asymmetric Transfer Hydrogenation. Organic Letters, 2005, 7, 1247-1250.	4.6	106
84	Trifluoromethanesulfinic Acid Derivatives as Nucleophilic Trifluoromethylating Reagents. Synlett, 2003, 2003, 0233-0235.	1.8	2