Jean-Baptiste Sortais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745176/publications.pdf

Version: 2024-02-01

66343 79698 5,577 84 42 73 citations h-index g-index papers 124 124 124 3621 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 2016, 7, 12641.	12.8	516
2	Ironâ€Catalyzed αâ€Alkylation of Ketones with Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14483-14486.	13.8	230
3	Cycloruthenated Compounds – Synthesis and Applications. European Journal of Inorganic Chemistry, 2009, 2009, 817-853.	2.0	208
4	Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex. Journal of Catalysis, 2017, 347, 57-62.	6.2	185
5	Nâ€Heterocyclic Carbene Ligands and Iron: An Effective Association for Catalysis. Advanced Synthesis and Catalysis, 2013, 355, 19-33.	4.3	167
6	Iron-Catalyzed C–H Borylation of Arenes. Journal of the American Chemical Society, 2015, 137, 4062-4065.	13.7	166
7	A Chemoenzymatic Approach to Enantiomerically Pure Amines Using Dynamic Kinetic Resolution: Application to the Synthesis of Norsertraline. Chemistry - A European Journal, 2009, 15, 3403-3410.	3.3	142
8	Transfer Hydrogenation of Carbonyl Derivatives Catalyzed by an Inexpensive Phosphine-Free Manganese Precatalyst. Organic Letters, 2017, 19, 3656-3659.	4.6	142
9	Selective Reduction of Esters to Aldehydes under the Catalysis of Wellâ€Defined NHC–Iron Complexes. Angewandte Chemie - International Edition, 2013, 52, 8045-8049.	13.8	138
10	Wellâ€Defined Cyclopentadienyl NHC Iron Complex as the Catalyst for Efficient Hydrosilylation of Amides to Amines and Nitriles. ChemCatChem, 2011, 3, 1747-1750.	3.7	136
11	NHC-carbene cyclopentadienyl iron based catalyst for a general and efficient hydrosilylation of imines. Chemical Communications, 2012, 48, 151-153.	4.1	116
12	Nâ∈Heterocyclic Carbene Pianoâ∈Stool Iron Complexes as Efficient Catalysts for Hydrosilylation of Carbonyl Derivatives. Advanced Synthesis and Catalysis, 2011, 353, 239-244.	4.3	113
13	Hydrogenation of ketones with a manganese PN3P pincer pre-catalyst. Catalysis Communications, 2017, 92, 1-4.	3.3	112
14	Cycloruthenated Primary and Secondary Amines as Efficient Catalyst Precursors for Asymmetric Transfer Hydrogenation. Organic Letters, 2005, 7, 1247-1250.	4.6	106
15	Amine synthesis <i>via</i> transition metal homogeneous catalysed hydrosilylation. RSC Advances, 2016, 6, 57603-57625.	3.6	106
16	Iron atalyzed Hydrosilylation of Esters. Advanced Synthesis and Catalysis, 2012, 354, 1879-1884.	4.3	104
17	Selective reduction of carboxylic acids to aldehydes through manganese catalysed hydrosilylation. Chemical Communications, 2013, 49, 10010.	4.1	104
18	Selective switchable iron-catalyzed hydrosilylation of carboxylic acids. Chemical Communications, 2012, 48, 10514.	4.1	102

#	Article	IF	CITATIONS
19	Hydrosilylation of Aldehydes and Ketones Catalyzed by an Nâ€Heterocyclic Carbeneâ€Nickel Hydride Complex under Mild Conditions. Advanced Synthesis and Catalysis, 2012, 354, 2619-2624.	4.3	96
20	Cyclopentadienyl–NHC Iron Complexes for Solventâ€Free Catalytic Hydrosilylation of Aldehydes and Ketones. European Journal of Inorganic Chemistry, 2012, 2012, 1333-1337.	2.0	95
21	Practical (asymmetric) transfer hydrogenation of ketones catalyzed by manganese with (chiral) diamines ligands. Catalysis Communications, 2018, 105, 31-36.	3.3	90
22	Manganese catalyzed \hat{l}_{\pm} -methylation of ketones with methanol as a C1 source. Chemical Communications, 2019, 55, 314-317.	4.1	90
23	Iron Dihydride Complex as the Preâ€catalyst for Efficient Hydrosilylation of Aldehydes and Ketones Under Visible Light Activation. Advanced Synthesis and Catalysis, 2011, 353, 1279-1284.	4.3	89
24	When iron met phosphines: a happy marriage for reduction catalysis. Green Chemistry, 2015, 17, 2283-2303.	9.0	85
25	Hydrosilylation of Aldehydes and Ketones Catalyzed by Halfâ€Sandwich Manganese(I) Nâ€Heterocyclic Carbene Complexes. Advanced Synthesis and Catalysis, 2014, 356, 1093-1097.	4.3	82
26	Cyclometalation of Primary Benzyl Amines by Ruthenium(II), Rhodium(III), and Iridium(III) Complexes. Organometallics, 2007, 26, 1856-1867.	2.3	76
27	Manganese catalyzed reductive amination of aldehydes using hydrogen as a reductant. Chemical Communications, 2018, 54, 4302-4305.	4.1	74
28	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie - International Edition, 2019, 58, 6727-6731.	13.8	73
29	Cyclometalated Complexes of Ruthenium, Rhodium and Iridium as Catalysts for Transfer Hydrogenation of Ketones and Imines. Advanced Synthesis and Catalysis, 2011, 353, 2844-2852.	4.3	70
30	Cobalt Carbonylâ€Based Catalyst for Hydrosilylation of Carboxamides. Advanced Synthesis and Catalysis, 2013, 355, 3358-3362.	4.3	70
31	[(NHC)Fe(CO) ₄] Efficient Preâ€catalyst for Selective Hydroboration of Alkenes. ChemCatChem, 2014, 6, 763-766.	3.7	70
32	(Cyclopentadienyl)iron(II) Complexes of N-Heterocyclic Carbenes Bearing a Malonate or Imidate Backbone: Synthesis, Structure, and Catalytic Potential in Hydrosilylation. Organometallics, 2013, 32, 4643-4655.	2.3	67
33	Hydrogenation of Carbonyl Derivatives Catalysed by Manganese Complexes Bearing Bidentate Pyridinylâ€Phosphine Ligands. Advanced Synthesis and Catalysis, 2018, 360, 676-681.	4.3	66
34	Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 2013, 49, 3691.	4.1	64
35	Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chemical Communications, 2014, 50, 14229-14232.	4.1	62
36	Half-Sandwich Manganese Complexes Bearing Cp Tethered N-Heterocyclic Carbene Ligands: Synthesis and Mechanistic Insights into the Catalytic Ketone Hydrosilylation. Organometallics, 2016, 35, 4090-4098.	2.3	62

#	Article	IF	Citations
37	Selective mono N-methylation of anilines with methanol catalyzed by rhenium complexes: An experimental and theoretical study. Journal of Catalysis, 2018, 366, 300-309.	6.2	58
38	Knölker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides. Organometallics, 2015, 34, 4521-4528.	2.3	56
39	1,2-Olefin addition of a frustrated amine–borane Lewis pair. Chemical Communications, 2009, , 7417.	4.1	53
40	Phosphaneâ€Pyridine Iron Complexes: Synthesis, Characterization and Application in Reductive Amination through the Hydrosilylation Reaction. European Journal of Inorganic Chemistry, 2012, 2012, 3546-3550.	2.0	50
41	Iron piano-stool phosphine complexes for catalytic hydrosilylation reaction. Inorganica Chimica Acta, 2012, 380, 301-307.	2.4	49
42	Cyclopentadienyl N-heterocyclic carbene–nickel complexes as efficient pre-catalysts for the hydrosilylation of imines. Catalysis Science and Technology, 2013, 3, 3111.	4.1	41
43	Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes. ChemSusChem, 2019, 12, 3078-3082.	6.8	41
44	Kinetics and Mechanism of Ruthenacycle-Catalyzed Asymmetric Hydrogen Transfer. Organometallics, 2008, 27, 5852-5859.	2.3	40
45	Hydrogenation of Carbonyl Derivatives with a Wellâ€Defined Rhenium Precatalyst. ChemCatChem, 2017, 9, 80-83.	3.7	39
46	Alkene Addition of Frustrated P/B and N/B Lewis Pairs at the [3]Ferrocenophane Framework. Organometallics, 2011, 30, 584-594.	2.3	37
47	Iron atalyzed Dehydrogenative Borylation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 3649-3654.	4.3	36
48	Asymmetric transfer hydrogenation of ketones promoted by manganese(I) pre-catalysts supported by bidentate aminophosphines. Catalysis Communications, 2020, 142, 106040.	3.3	35
49	Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coordination Chemistry Reviews, 2022, 458, 214421.	18.8	35
50	Nickelâ€Catalysed Reductive Amination with Hydrosilanes. ChemCatChem, 2013, 5, 2861-2864.	3.7	34
51	A convenient nickel-catalysed hydrosilylation of carbonyl derivatives. Catalysis Science and Technology, 2013, 3, 81-84.	4.1	34
52	Rhenium and Manganese Complexes Bearing Amino-Bis(phosphinite) Ligands: Synthesis, Characterization, and Catalytic Activity in Hydrogenation of Ketones. Organometallics, 2018, 37, 1271-1279.	2.3	33
53	Synthesis of new iron–NHC complexes as catalysts for hydrosilylation reactions. Applied Organometallic Chemistry, 2013, 27, 459-464.	3.5	32
54	Manganeseâ€"New prominent actor in transfer hydrogenation catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100511.	5.9	32

#	Article	IF	CITATIONS
55	Cationic iron(II) complexes of the mixed cyclopentadienyl (Cp) and the N-heterocyclic carbene (NHC) ligands as effective precatalysts for the hydrosilylation of carbonyl compounds. Journal of Organometallic Chemistry, 2014, 762, 81-87.	1.8	31
56	Cyclometalation of Secondary Benzyl Amines by Ruthenium(II) Complexes. Organometallics, 2007, 26, 1868-1874.	2.3	29
57	Amine Synthesis through Mild Catalytic Hydrosilylation of Imines using Polymethylhydroxysiloxane and [RuCl ₂ (arene)] ₂ Catalysts. ChemSusChem, 2012, 5, 396-399.	6.8	29
58	Direct synthesis of dicarbonyl PCP-iron hydride complexes and catalytic dehydrogenative borylation of styrene. Dalton Transactions, 2016, 45, 11101-11108.	3.3	29
59	Manganeseâ€Catalyzed Transfer Hydrogenation of Aldimines. ChemCatChem, 2019, 11, 5256-5259.	3.7	28
60	Cycloruthenated compounds as efficient catalyst for asymmetric hydride transfer reaction. Pure and Applied Chemistry, 2006, 78, 457-462.	1.9	25
61	Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. RSC Advances, 2014, 4, 25892.	3.6	25
62	Iron-Catalyzed Reduction and Hydroelementation Reactions. Topics in Organometallic Chemistry, 2015, , 173-216.	0.7	25
63	Cationic PCP and PCN NHC Core Pincer-Type Mn(I) Complexes: From Synthesis to Catalysis. Organometallics, 2021, 40, 231-241.	2.3	23
64	Nickel complexes of 1,2,4-triazole derived amido-functionalized N-heterocyclic carbene ligands: Synthesis, theoretical studies and catalytic application. Journal of Organometallic Chemistry, 2015, 786, 63-70.	1.8	22
65	Rhenium-Catalyzed Reduction of Carboxylic Acids with Hydrosilanes. Organic Letters, 2019, 21, 7713-7716.	4.6	19
66	Ising-type Magnetic Anisotropy and Slow Relaxation of the Magnetization in Four-Coordinate Amido-Pyridine Fe ^{II} Complexes. Inorganic Chemistry, 2016, 55, 10968-10977.	4.0	17
67	Cyclen-catalyzed Henry reaction under neutral conditions. Tetrahedron Letters, 2010, 51, 4555-4557.	1.4	15
68	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie, 2019, 131, 6799-6803.	2.0	15
69	Bis[diphenylphosphino]methane and its bridge-substituted analogues as chemically non-innocent ligands for H ₂ activation. Chemical Communications, 2020, 56, 2139-2142.	4.1	15
70	Manganese and rhenium-catalyzed selective reduction of esters to aldehydes with hydrosilanes. Chemical Communications, 2020, 56, 11617-11620.	4.1	13
71	1,2,4â€Triazoleâ€Based Nâ€Heterocyclic CarbÂene Nickel Complexes – Synthesis and Catalytic Application. European Journal of Inorganic Chemistry, 2015, 2015, 5226-5231.	2.0	12
72	Nâ€Heterocyclic Carbene Iron Silyl Hydride Complexes. Israel Journal of Chemistry, 2017, 57, 1216-1221.	2.3	11

#	Article	IF	CITATIONS
73	Experimental and Theoretical Insights into the Electronic Properties of Anionic N-Heterocyclic Dicarbenes through the Rational Synthesis of Their Transition Metal Complexes. Inorganic Chemistry, 2021, 60, 4015-4025.	4.0	11
74	Hydrosilylation Reactions Catalyzed by Rhenium. Molecules, 2021, 26, 2598.	3.8	10
75	Cycloruthenated complexes as homogeneous catalysts for atom-transfer radical additions. Tetrahedron Letters, 2010, 51, 822-825.	1.4	9
76	Chiral Cyclopentadienylâ€type Ligands: a New Breakthrough for Asymmetric CH Functionalisation. ChemCatChem, 2013, 5, 1067-1068.	3.7	9
77	Ruthenium complexes bearing amino-bis(phosphinite) or amino-bis(aminophosphine) ligands: Application in catalytic ester hydrogenation. Molecular Catalysis, 2017, 432, 15-22.	2.0	8
78	Nitrogen-containing xanthene-based chiral ligands: Synthesis, NMR and X-ray analyses, and catalytic applications of their palladium, silver and rhodium complexes. Polyhedron, 2006, 25, 3349-3365.	2.2	6
79	Homogeneous Iron Catalysis – Highlights on the Increasing Impact of a Nonâ€Noble Metal. Israel Journal of Chemistry, 2017, 57, 1069-1069.	2.3	5
80	Synthesis, Characterization, and Fluxional Behavior of a 34 Electron Homochiral Dimetallic Complex with an Unsupported Hydride Bridge between Two Ru Atoms. Organometallics, 2012, 31, 2821-2828.	2.3	3
81	Imidazolidinium ferrate complexes: Synthesis and catalytic properties. Comptes Rendus Chimie, 2014, 17, 541-548.	0.5	3
82	Homogeneous Catalysis is Up for the Challenge. ChemCatChem, 2019, 11, 5158-5159.	3.7	3
83	Trifluoromethanesulfinic Acid Derivatives as Nucleophilic Trifluoromethylating Reagents. Synlett, 2003, 2003, 0233-0235.	1.8	2

î½₃-Carbonato-β³<i>O</i>?i>O</i>?′:<i>O</i>?′:<i>O</i>?′′-tris{(η⁶-benzene)[(<i>R</i>)-1-(1-amino nexafluoridophosphate dichloromethane solvate. Acta Crystallographica Section E: Structure 0.2 2 Reports Online, 2008, 64, m483-m484.