Assocâ€prof Elena E Ferapontova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7744441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioelectrochemical analysis of neurodegeneration: Refocusing efforts. Current Opinion in Electrochemistry, 2022, 32, 100924.	2.5	2
2	Ultrasensitive disposable apatasensor for reagentless electrocatalytic detection of thrombin: An O2-Dependent hemin-G4-aptamer assay on gold screen-printed electrodes. Talanta, 2022, 245, 123456.	2.9	8
3	Covalent Hemin/G4 complex-linked sandwich bioassay on magnetic beads for femtomolar HER-2/neu detection in human serum via direct electrocatalytic reduction of oxygen. Analytica Chimica Acta, 2022, 1219, 340049.	2.6	4
4	Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. Sensors, 2021, 21, 736.	2.1	36
5	Femtomolar Detection of Thrombin in Serum and Cerebrospinal Fluid via Direct Electrocatalysis of Oxygen Reduction by the Covalent G4-Hemin-Aptamer Complex. ACS Applied Materials & Interfaces, 2021, 13, 37979-37988.	4.0	23
6	Electrocatalytic Oxidation of Water by OH â^' ―and H 2 Oâ€Capped IrO x Nanoparticles Electrophoretically Deposited on Graphite and Basal Plane HOPG: Effect of the Substrate Electrode**. ChemElectroChem, 2021, 8, 1632-1641.	1.7	1
7	Electrochemical assays for microbial analysis: how far they are from solving microbiota and microbiome challenges. Current Opinion in Electrochemistry, 2020, 19, 153-161.	2.5	19
8	Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. Sensors, 2020, 20, 5561.	2.1	13
9	Cellulase-Linked Immunomagnetic Microbial Assay on Electrodes: Specific and Sensitive Detection of a Single Bacterial Cell. Analytical Chemistry, 2020, 92, 12451-12459.	3.2	19
10	Electrochemical Characterization and Bioelectrocatalytic H ₂ O ₂ Sensing of Non‣ymbiotic Hexa oordinated Sugar Beet Hemoglobins. ChemElectroChem, 2020, 7, 2114-2122.	1.7	6
11	Electron Transfer in DNA at Electrified Interfaces. Chemistry - an Asian Journal, 2019, 14, 3773-3781.	1.7	13
12	Activation of Cellobiose Dehydrogenase Bioelectrocatalysis by Carbon Nanoparticles. ChemElectroChem, 2019, 6, 5032-5040.	1.7	2
13	Femtomolar electroanalysis of a breast cancer biomarker HER-2/neu protein in human serum by the cellulase-linked sandwich assay on magnetic beads. Analytica Chimica Acta, 2019, 1077, 140-149.	2.6	31
14	Electrocatalysis of ferricyanide reduction mediated by electron transfer through the DNA duplex: Kinetic analysis by thin layer voltammetry. Electrochimica Acta, 2019, 318, 703-710.	2.6	15
15	Bacillus Licheniformis CotA Laccase Mutant: ElectrocatalyticReduction of O 2 from 0.6â€V (SHE) at pH 8 and in Seawater. ChemElectroChem, 2019, 6, 2043-2049.	1.7	12
16	Directional Preference of DNAâ€Mediated Electron Transfer in Goldâ€Tethered DNA Duplexes: Is DNA a Molecular Rectifier?. Angewandte Chemie, 2019, 131, 3080-3084.	1.6	2
17	Directional Preference of DNAâ€Mediated Electron Transfer in Goldâ€Tethered DNA Duplexes: Is DNA a Molecular Rectifier?. Angewandte Chemie - International Edition, 2019, 58, 3048-3052.	7.2	23
18	Dopamine Binding and Analysis in Undiluted Human Serum and Blood by the RNA-Aptamer Electrode. ACS Chemical Neuroscience, 2019, 10, 1706-1715.	1.7	38

#	Article	IF	CITATIONS
19	"Negative electrocatalysis―based specific analysis of dopamine at basal plane HOPG in the presence of structurally related catecholamines. Electrochemistry Communications, 2018, 89, 48-51.	2.3	11
20	Electrocatalytic Discrimination between Dopamine and Norepinephrine at Graphite and Basal Plane HOPG Electrodes. Electroanalysis, 2018, 30, 1082-1090.	1.5	12
21	Electrochemistry and electrocatalysis of covalent hemin-G4 complexes on gold. Journal of Electroanalytical Chemistry, 2018, 812, 174-179.	1.9	10
22	Electrochemical Enzyme-Linked Sandwich Assay with a Cellulase Label for Ultrasensitive Analysis of Synthetic DNA and Cell-Isolated RNA. ACS Sensors, 2018, 3, 2104-2111.	4.0	12
23	Sequence-Specific Electron Transfer Mediated by DNA Duplexes Attached to Gold through the Alkanethiol Linker. Journal of Physical Chemistry B, 2018, 122, 10077-10085.	1.2	21
24	Picomolar sensitive and SNP-selective "Off-On―hairpin genosensor based on structure-tunable redox indicator signals. Biosensors and Bioelectronics, 2018, 117, 444-449.	5.3	11
25	Electron Transfer in Spacer-Free DNA Duplexes Tethered to Gold via dA ₁₀ Tags. Langmuir, 2018, 34, 8472-8479.	1.6	23
26	Surface Heterogeneities Matter in Fast Scan Cyclic Voltammetry Investigations of Catecholamines in Brain with Carbon Microelectrodes of High-Aspect Ratio: Dopamine Oxidation at Conical Carbon Microelectrodes. Journal of the Electrochemical Society, 2018, 165, G3057-G3065.	1.3	12
27	DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annual Review of Analytical Chemistry, 2018, 11, 197-218.	2.8	135
28	Seawater operating bio-photovoltaic cells coupling semiconductor photoanodes and enzymatic biocathodes. Sustainable Energy and Fuels, 2017, 1, 842-850.	2.5	9
29	Specific Picomolar Detection of a Breast Cancer Biomarker HERâ€2/ <i>neu</i> Protein in Serum: Electrocatalytically Amplified Electroanalysis by the Aptamer/PEGâ€Modified Electrode. ChemElectroChem, 2017, 4, 872-879.	1.7	36
30	Electrochemical Assay for a Total Cellulase Activity with Improved Sensitivity. Analytical Chemistry, 2017, 89, 3959-3965.	3.2	18
31	Submolecular Structure and Orientation of Oligonucleotide Duplexes Tethered to Gold Electrodes Probed by Infrared Reflection Absorption Spectroscopy: Effect of the Electrode Potentials. Journal of Physical Chemistry B, 2017, 121, 1552-1565.	1.2	27
32	Electrochemical Analysis of Dopamine: Perspectives of Specific In Vivo Detection. Electrochimica Acta, 2017, 245, 664-671.	2.6	85
33	A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer. Biochemical and Biophysical Research Communications, 2017, 489, 381-385.	1.0	31
34	Chronopotentiometric sensing of specific interactions between lysozyme and the DNA aptamer. Bioelectrochemistry, 2017, 114, 42-47.	2.4	21
35	Basic concepts and recent advances in electrochemical analysis of nucleic acids. Current Opinion in Electrochemistry, 2017, 5, 218-225.	2.5	37
36	Wiring of heme enzymes by methylene-blue labeled dendrimers. Electrochimica Acta, 2017, 249, 206-215.	2.6	7

#	Article	IF	CITATIONS
37	Hybridization Biosensors Relying on Electrical Properties of Nucleic Acids. Electroanalysis, 2017, 29, 6-13.	1.5	51
38	Enhanced electron transfer between gold nanoparticles and horseradish peroxidase reconstituted onto alkanethiol-modified hemin. Electrochemistry Communications, 2016, 70, 39-42.	2.3	17
39	Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes. Analytical Chemistry, 2016, 88, 7984-7990.	3.2	32
40	Electron Transfer in Methyleneâ€Blueâ€Labeled G3 Dendrimers Tethered to Gold. ChemElectroChem, 2016, 3, 2270-2280.	1.7	5
41	Wiring of Glucose Oxidizing Flavin Adenine Dinucleotide-Dependent Enzymes by Methylene Blue-Modified Third Generation Poly(amidoamine) Dendrimers Attached to Spectroscopic Graphite Electrodes. Electrochimica Acta, 2016, 197, 263-272.	2.6	13
42	Bioelectrocatalytic oxidation of glucose by hexose oxidase directly wired to graphite. Electrochemistry Communications, 2016, 65, 1-4.	2.3	6
43	Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters. Analytical Chemistry, 2016, 88, 3608-3616.	3.2	89
44	Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG. Chemical Communications, 2015, 51, 14111-14114.	2.2	15
45	Gated electron transfer reactions of truncated hemoglobin from Bacillus subtilis differently orientated on SAM-modified electrodes. Physical Chemistry Chemical Physics, 2015, 17, 15365-15374.	1.3	11
46	Surface state of the dopamine RNA aptamer affects specific recognition and binding of dopamine by the aptamer-modified electrodes. Analyst, The, 2015, 140, 4089-4096.	1.7	39
47	Electrochemical analysis Aβ42 peptide adsorption and aggregation on spectroscopic graphite. Monatshefte Für Chemie, 2015, 146, 781-786.	0.9	7
48	Electroanalysis of pM-levels of urokinase plasminogen activator in serum by phosphorothioated RNA aptamer. Analyst, The, 2015, 140, 3794-3802.	1.7	35
49	Electrocatalytic interconversion of NADH and NAD ⁺ by Escherichia coli flavohemoglobin. Chemical Communications, 2015, 51, 16096-16098.	2.2	13
50	Implications of FAD Electrode Reaction Kinetics for Electrocatalysis of NADH Oxidation and Development of NADâ€Đependent Enzyme Electrodes. Electroanalysis, 2014, 26, 1354-1361.	1.5	7
51	Electrochemistry of weakly adsorbed species: Voltammetric analysis of electron transfer between gold electrodes and Ru hexaamine electrostatically interacting with DNA duplexes. Electrochimica Acta, 2014, 126, 151-157.	2.6	39
52	Electrocatalysis of Water Oxidation by H ₂ Oâ€Capped Iridiumâ€Oxide Nanoparticles Electrodeposited on Spectroscopic Graphite. ChemPhysChem, 2014, 15, 2844-2850.	1.0	8
53	Electrochemical analysis of the fibrillation of Parkinson's disease α-synuclein. Analyst, The, 2014, 139, 749-756.	1.7	29
54	Direct electrochemical and AFM detection of amyloid-β peptide aggregation on basal plane HOPC. Nanoscale, 2014, 6, 7853-7857.	2.8	41

#	Article	IF	CITATIONS
55	Reconstitution of peroxidase onto hemin-terminated alkanethiol self-assembled monolayers on gold. Journal of Electroanalytical Chemistry, 2014, 728, 18-25.	1.9	23
56	DNA-Mediated Electron Transfer in DNA Duplexes Tethered to Gold Electrodes via Phosphorothioated dA Tags. Langmuir, 2014, 30, 11853-11857.	1.6	42
57	Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. ACS Catalysis, 2014, 4, 2006-2015.	5.5	173
58	Electrochemical Switching with 3D DNA Tetrahedral Nanostructures Self-Assembled at Gold Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 8928-8931.	4.0	77
59	Direct Bioâ€electrocatalysis of O ₂ Reduction by <i>Streptomyces coelicolor</i> Laccase Orientated at Promoterâ€Modified Graphite Electrodes. ChemPhysChem, 2013, 14, 2112-2124.	1.0	27
60	Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures. Analytical and Bioanalytical Chemistry, 2013, 405, 3693-3703.	1.9	32
61	RNA Aptamer-Based Electrochemical Biosensor for Selective and Label-Free Analysis of Dopamine. Analytical Chemistry, 2013, 85, 121-128.	3.2	184
62	Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis. Electrochimica Acta, 2013, 110, 86-93.	2.6	16
63	Direct electrochemistry and environmental sensing of rice hemoglobin immobilized at graphite electrodes. Journal of Electroanalytical Chemistry, 2013, 704, 67-74.	1.9	12
64	Direct electrochemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphiteelectrodes. Biosensors and Bioelectronics, 2013, 42, 219-224.	5.3	30
65	Quantifying Protein Adsorption and Function at Nanostructured Materials: Enzymatic Activity of Glucose Oxidase at GLAD Structured Electrodes. Langmuir, 2012, 28, 11106-11114.	1.6	21
66	Activation of laccase bioelectrocatalysis of O2 reduction to H2O by carbon nanoparticles. Journal of Electroanalytical Chemistry, 2012, 667, 11-18.	1.9	34
67	Electrochemical sandwich assay for attomole analysis of DNA and RNA from beer spoilage bacteria Lactobacillus brevis. Biosensors and Bioelectronics, 2012, 37, 99-106.	5.3	31
68	Unmediated by DNA Electron Transfer in Redox-Labeled DNA Duplexes End-Tethered to Gold Electrodes. Journal of the American Chemical Society, 2012, 134, 14499-14507.	6.6	99
69	Effect of the DNA End of Tethering to Electrodes on Electron Transfer in Methylene Blue-Labeled DNA Duplexes. Langmuir, 2012, 28, 16218-16226.	1.6	60
70	Direct Detection of DNA Conformation in Hybridization Processes. Analytical Chemistry, 2012, 84, 1854-1861.	3.2	58
71	A 1.76V hybrid Zn-O2 biofuel cell with a fungal laccase-carbon cloth biocathode. Electrochimica Acta, 2012, 62, 218-226.	2.6	33
72	Development of a lipase-based optical assay for detection of DNA. Organic and Biomolecular Chemistry, 2011, 9, 6352.	1.5	7

#	Article	IF	CITATIONS
73	"Offâ^'On―Electrochemical Hairpin-DNA-Based Genosensor for Cancer Diagnostics. Analytical Chemistry, 2011, 83, 1594-1602.	3.2	160
74	Recent Advances in Electrochemical Aptamer-Based Sensors. Current Organic Chemistry, 2011, 15, 498-505.	0.9	33
75	Electrochemical Indicators for DNA Electroanalysis. Current Analytical Chemistry, 2011, 7, 51-62.	0.6	67
76	Peroxidase biocathodes for a biofuel cell development. Journal of Renewable and Sustainable Energy, 2010, 2, .	0.8	29
77	Synthesis and Application of a Triazeneâ^'Ferrocene Modifier for Immobilization and Characterization of Oligonucleotides at Electrodes. Journal of Organic Chemistry, 2010, 75, 2474-2481.	1.7	39
78	DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific. Analyst, The, 2010, 135, 1443.	1.7	112
79	Electrochemical DNA sandwich assay with a lipase label for attomole detection ofDNA. Chemical Communications, 2010, 46, 1836-1838.	2.2	35
80	Long-range electron transfer in recombinant peroxidases anisotropically orientated on gold electrodes. Physical Chemistry Chemical Physics, 2010, 12, 10098.	1.3	36
81	Effect of Serum on an RNA Aptamer-Based Electrochemical Sensor for Theophylline. Langmuir, 2009, 25, 4279-4283.	1.6	71
82	Synthesis and electrochemical studies of an anthraquinone-conjugated nucleoside and derived oligonucleotides. Organic and Biomolecular Chemistry, 2009, 7, 905.	1.5	35
83	Self-Assembly of Artificial Nucleobase 1 <i>H</i> -Benzimidazole-4,7-dione at the Liquid/Solid Interface. Journal of Physical Chemistry B, 2009, 113, 8675-8681.	1.2	10
84	Electrochemical control of a DNA Holliday Junction nanoswitch by Mg2+ ions. Biosensors and Bioelectronics, 2008, 24, 422-428.	5.3	14
85	An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum. Journal of the American Chemical Society, 2008, 130, 4256-4258.	6.6	330
86	Biocatalysis of theophylline oxidation by microbial theophylline oxidase in the presence of non-physiological electron acceptors. Biocatalysis and Biotransformation, 2008, 26, 455-465.	1.1	19
87	Molecular Recognition with DNA Nanoswitches:  Effects of Single Base Mutations on Structure. Journal of Physical Chemistry B, 2008, 112, 2439-2444.	1.2	11
88	Direct Electron Transfer Kinetics in Horseradish Peroxidase Electrocatalysis. Journal of Physical Chemistry B, 2007, 111, 469-477.	1.2	69
89	Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes. Biosensors and Bioelectronics, 2007, 22, 2508-2515.	5.3	49
90	Electrochemical deposition of Zn on TiN microelectrode arrays for microanodes. Electrochemistry Communications, 2007, 9, 303-309.	2.3	20

#	Article	IF	CITATIONS
91	Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1343-1354.	1.1	25
92	Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes. Bioelectrochemistry, 2005, 66, 55-63.	2.4	55
93	Direct electrochemistry of recombinant tobacco peroxidase on gold. Electrochemistry Communications, 2005, 7, 1291-1297.	2.3	28
94	Direct Electrochemistry of Proteins and Enzymes. Perspectives in Bioanalysis, 2005, , 517-598.	0.3	50
95	Spraying Enzymes in Microemulsions of AOT in Nonpolar Organic Solvents for Fabrication of Enzyme Electrodes. Analytical Chemistry, 2005, 77, 7074-7079.	3.2	16
96	Spectroelectrochemical study of heme- and molybdopterin cofactor-containing chicken liver sulphite oxidase. Bioelectrochemistry, 2004, 63, 49-53.	2.4	17
97	Electrical "wiring―of viable Gluconobacter oxydans cells with a flexible osmium-redox polyelectrolyte. Electrochemistry Communications, 2004, 6, 621-626.	2.3	88
98	Electrochemistry of guanine and 8-oxoguanine at gold electrodes. Electrochimica Acta, 2004, 49, 1751-1759.	2.6	71
99	Recombinant horseradish peroxidase - and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochemistry, 2004, 63, 277-280.	2.4	19
100	Electrochemically induced oxidative damage to double-stranded calf thymus DNA adsorbed on gold electrodes. Biochemistry (Moscow), 2003, 68, 99-104.	0.7	8
101	Direct Electron Transfer of Heme- and Molybdopterin Cofactor-Containing Chicken Liver Sulfite Oxidase on Alkanethiol-Modified Gold Electrodes. Analytical Chemistry, 2003, 75, 4841-4850.	3.2	121
102	Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosensors and Bioelectronics, 2002, 17, 953-963.	5.3	75
103	Effect of proton donors on direct electron transfer in the system gold electrode–horseradish peroxidase. Electrochemistry Communications, 2001, 3, 767-774.	2.3	42
104	Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. Biosensors and Bioelectronics, 2001, 16, 147-157.	5.3	164
105	Direct electron transfer in the system gold electrode–recombinant horseradish peroxidases. Journal of Electroanalytical Chemistry, 2001, 509, 19-26.	1.9	56
106	P-chip and P-chip bienzyme electrodes based on recombinant forms of horseradish peroxidase immobilized on gold electrodes. Biochemistry (Moscow), 2001, 66, 832-839.	0.7	10
107	Effect of cation adsorption on the kinetics of anion electroreduction. Journal of Electroanalytical Chemistry, 1999, 476, 26-36.	1.9	33
108	Effect of cation adsorption on the kinetics of anion electroreduction. Journal of Electroanalytical Chemistry, 1999, 476, 37-45.	1.9	10