
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774389/publications.pdf Version: 2024-02-01

FODMANN RADD

#	Article	IF	CITATIONS
1	Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nature Communications, 2022, 13, 1244.	12.8	25
2	The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology, 2022, 32, 580-587.	2.5	2
3	A Bacterial Mannose Binding Lectin as a Tool for the Enrichment of C- and O-Mannosylated Peptides. Analytical Chemistry, 2022, 94, 7329-7338.	6.5	8
4	Glycosyltransferase POMGNT1 deficiency strengthens N-cadherin-mediated cell–cell adhesion. Journal of Biological Chemistry, 2021, 296, 100433.	3.4	5
5	Tracking changes in adaptation to suspension growth for MDCK cells: cell growth correlates with levels of metabolites, enzymes and proteins. Applied Microbiology and Biotechnology, 2021, 105, 1861-1874.	3.6	2
6	Comprehensive <i>N</i> â€glycosylation analysis of the influenza A virus proteins HA and NA from adherent and suspension MDCK cells. FEBS Journal, 2021, 288, 4869-4891.	4.7	6
7	Site-specific N-glycosylation analysis of animal cell culture-derived Zika virus proteins. Scientific Reports, 2021, 11, 5147.	3.3	5
8	A patient-based medaka <i>alg2</i> mutant as a model for hypo- <i>N</i> -glycosylation. Development (Cambridge), 2021, 148, .	2.5	2
9	Presence and Levels of Galactosyllactoses and Other Oligosaccharides in Human Milk and Their Variation during Lactation and According to Maternal Phenotype. Nutrients, 2021, 13, 2324.	4.1	15
10	FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Communications Biology, 2021, 4, 832.	4.4	7
11	Simultaneous Monitoring of Monoclonal Antibody Variants by Strong Cation-Exchange Chromatography Hyphenated to Mass Spectrometry to Assess Quality Attributes of Rituximab-Based Biotherapeutics. International Journal of Molecular Sciences, 2021, 22, 9072.	4.1	9
12	Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microbial Cell Factories, 2021, 20, 162.	4.0	10
13	Cell-Free Glycoengineering of the Recombinant SARS-CoV-2 Spike Glycoprotein. Frontiers in Bioengineering and Biotechnology, 2021, 9, 699025.	4.1	5
14	A spoonful of Lâ€fucose—an efficient therapy for GFUSâ€CDG, a new glycosylation disorder. EMBO Molecular Medicine, 2021, 13, e14332.	6.9	13
15	Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. Experientia Supplementum (2012), 2021, 112, 137-172.	0.9	8
16	Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nature Methods, 2021, 18, 1304-1316.	19.0	74
17	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	3.8	87
18	Enzymatic Synthesis of Glycans and Glycoconjugates. Advances in Biochemical Engineering/Biotechnology, 2020, 175, 231-280.	1.1	11

#	Article	IF	CITATIONS
19	Nâ€glycosylation analysis of mouse immunoglobulin G isolated from dried blood spots. Electrophoresis, 2020, 42, 2615-2618.	2.4	4
20	State-of-the-Art Glycomics Technologies in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, 2020, 175, 379-411.	1.1	5
21	Glycoproteomics Technologies in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, 2020, 175, 413-434.	1.1	3
22	High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition. Glycobiology, 2020, 30, 679-694.	2.5	26
23	Synthesis of lipid-linked oligosaccharides by a compartmentalized multi-enzyme cascade for the in vitro N-glycosylation of peptides. Journal of Biotechnology, 2020, 322, 54-65.	3.8	8
24	Enzymatic Cascade Synthesis Provides Novel Linear Human Milk Oligosaccharides as Reference Standards for xCGE-LIF Based High-Throughput Analysis. Biotechnology Journal, 2019, 14, 1800305.	3.5	15
25	Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nature Communications, 2019, 10, 4816.	12.8	13
26	Enzymatic Cascades for Tailored 13C6 and 15N Enriched Human Milk Oligosaccharides. Molecules, 2019, 24, 3482.	3.8	8
27	Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBC.PK2.1. Vaccine, 2019, 37, 7019-7028.	3.8	18
28	Approach for Profiling of Glycosphingolipid Glycosylation by Multiplexed Capillary Gel Electrophoresis Coupled to Laser-Induced Fluorescence Detection To Identify Cell-Surface Markers of Human Pluripotent Stem Cells and Derived Cardiomyocytes. Analytical Chemistry, 2019, 91, 6413-6418.	6.5	28
29	The minimum information required for a glycomics experiment (MIRAGE) project: LC guidelines. Glycobiology, 2019, 29, 349-354.	2.5	30
30	Post-Column Make-Up Flow (PCMF) Enhances the Performance of Capillary-Flow PGC-LC-MS/MS-Based Glycomics. Analytical Chemistry, 2019, 91, 4559-4567.	6.5	42
31	The subcommissural organ and the Reissner fiber: old friends revisited. Cell and Tissue Research, 2019, 375, 507-529.	2.9	26
32	High-throughput Serum N-Glycomics: Method Comparison and Application to Study Rheumatoid Arthritis and Pregnancy-associated Changes. Molecular and Cellular Proteomics, 2019, 18, 3-15.	3.8	69
33	Minimal B Cell Extrinsic IgG Glycan Modifications of Pro- and Anti-Inflammatory IgG Preparations in vivo. Frontiers in Immunology, 2019, 10, 3024.	4.8	23
34	One pot synthesis of GDPâ€mannose by a multiâ€enzyme cascade for enzymatic assembly of lipidâ€linked oligosaccharides. Biotechnology and Bioengineering, 2018, 115, 192-205.	3.3	35
35	MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go. Analytical Chemistry, 2018, 90, 685-689.	6.5	65
36	Improvement of electrospray stability in negative ion mode for nano-PGC-LC-MS glycoanalysis via post-column make-up flow. Glycoconjugate Journal, 2018, 35, 499-509.	2.7	11

#	Article	IF	CITATIONS
37	The Fine Art of Destruction: A Guide to Inâ€Depth Glycoproteomic Analyses—Exploiting the Diagnostic Potential of Fragment Ions. Proteomics, 2018, 18, e1800282.	2.2	36
38	glyXtool ^{MS} : An Open-Source Pipeline for Semiautomated Analysis of Glycopeptide Mass Spectrometry Data. Analytical Chemistry, 2018, 90, 11908-11916.	6.5	35
39	Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156). Journal of Biological Chemistry, 2018, 293, 18138-18150.	3.4	30
40	Establishment of a five-enzyme cell-free cascade for the synthesis of uridine diphosphate N-acetylglucosamine. Journal of Biotechnology, 2018, 283, 120-129.	3.8	26
41	Plasma N-Glycan Signatures Are Associated With Features ofÂInflammatory Bowel Diseases. Gastroenterology, 2018, 155, 829-843.	1.3	80
42	Alterations of the Human Skin N- and O-Glycome in Basal Cell Carcinoma and Squamous Cell Carcinoma. Frontiers in Oncology, 2018, 8, 70.	2.8	42
43	The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology, 2017, 27, 280-284.	2.5	69
44	Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition. Anaerobe, 2017, 46, 56-68.	2.1	33
45	Quantitative Assessment of Sialoâ€Glycoproteins and Nâ€Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. ChemBioChem, 2017, 18, 1317-1331.	2.6	44
46	Influence of the production system on the surface properties of influenza A virus particles. Engineering in Life Sciences, 2017, 17, 1071-1077.	3.6	3
47	Sialylation Is Dispensable for Early Murine Embryonic Development in Vitro. ChemBioChem, 2017, 18, 1305-1316.	2.6	27
48	Improvement of the glycoproteomic toolbox with the discovery of a unique C-terminal cleavage specificity of flavastacin for N-glycosylated asparagine. Scientific Reports, 2017, 7, 11419.	3.3	9
49	Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels, 2016, 9, 155.	6.2	80
50	The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome, 2016, 4, 51.	11.1	124
51	Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics. Advances in Experimental Medicine and Biology, 2016, 919, 217-226.	1.6	2
52	Towards personalized diagnostics via longitudinal study of the human plasma N-glycome. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1728-1738.	2.4	72
53	Ezrin and HNRNP expression correlate with increased virus release rate and early onset of virusâ€induced apoptosis of MDCK suspension cells. Biotechnology Journal, 2016, 11, 1332-1342.	3.5	2
54	The minimum information required for a glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of glycomics datasets. Glycobiology, 2016, 26, 907-910.	2.5	62

#	Article	IF	CITATIONS
55	Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Molecular and Cellular Proteomics, 2016, 15, 1435-1452.	3.8	51
56	Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1012-1013, 193-203.	2.3	20
57	Site-specific O-Glycosylation Analysis of Human Blood Plasma Proteins. Molecular and Cellular Proteomics, 2016, 15, 624-641.	3.8	67
58	Fractionation of biogas plant sludge material improves metaproteomic characterization to investigate metabolic activity of microbial communities. Proteomics, 2015, 15, 3585-3589.	2.2	14
59	Metaproteomics of activated sludge from a wastewater treatment plant – A pilot study. Proteomics, 2015, 15, 3596-3601.	2.2	52
60	Exclusive Decoration of Simian Immunodeficiency Virus Env with High-Mannose Type N-Glycans Is Not Compatible with Mucosal Transmission in Rhesus Macaques. Journal of Virology, 2015, 89, 11727-11733.	3.4	5
61	Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics, 2015, 15, 3544-3552.	2.2	70
62	Monitoring changes in proteome during stepwise adaptation of a MDCK cell line from adherence to growth in suspension. Vaccine, 2015, 33, 4269-4280.	3.8	19
63	The MetaProteomeAnalyzer: A Powerful Open-Source Software Suite for Metaproteomics Data Analysis and Interpretation. Journal of Proteome Research, 2015, 14, 1557-1565.	3.7	169
64	Navigating through metaproteomics data: A logbook of database searching. Proteomics, 2015, 15, 3439-3453.	2.2	128
65	Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome. Applied Microbiology and Biotechnology, 2015, 99, 7791-7803.	3.6	64
66	Comparison of Influenza Virus Particle Purification Using Magnetic Sulfated Cellulose Particles with an Established Centrifugation Method for Analytics. Analytical Chemistry, 2015, 87, 10708-10711.	6.5	4
67	N-Glycosylation Fingerprinting of Viral Glycoproteins by xCGE-LIF. Methods in Molecular Biology, 2015, 1331, 123-143.	0.9	39
68	Viewing the proteome: How to visualize proteomics data?. Proteomics, 2015, 15, 1341-1355.	2.2	32
69	MIRAGE: The minimum information required for a glycomics experiment. Glycobiology, 2014, 24, 402-406.	2.5	116
70	Comparative Performance of Four Methods for High-throughput Glycosylation Analysis of Immunoglobulin G in Genetic and Epidemiological Research. Molecular and Cellular Proteomics, 2014, 13, 1598-1610.	3.8	169
71	Prozessüberwachung von Biogasanlagen mittels Metaproteomanalyse. Chemie-Ingenieur-Technik, 2014, 86, 1415-1415.	0.8	0
72	DeNovoGUI: An Open Source Graphical User Interface for <i>de Novo</i> Sequencing of Tandem Mass Spectra. Journal of Proteome Research, 2014, 13, 1143-1146.	3.7	73

#	Article	IF	CITATIONS
73	Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe, 2014, 29, 59-67.	2.1	68
74	Vaccine Production: Upstream Processing with Adherent or Suspension Cell Lines. Methods in Molecular Biology, 2014, 1104, 371-393.	0.9	23
75	CAP, a new human suspension cell line for influenza virus production. Applied Microbiology and Biotechnology, 2013, 97, 111-122.	3.6	38
76	Proteome analysis of virus–host cell interaction: rabies virus replication in Vero cells in two different media. Applied Microbiology and Biotechnology, 2013, 97, 5493-5506.	3.6	15
77	Metaproteome analysis of the microbial communities in agricultural biogas plants. New Biotechnology, 2013, 30, 614-622.	4.4	92
78	Toward Animal Cell Culture–Based Influenza Vaccine Design: Viral Hemagglutinin <i>N-</i> Glycosylation Markedly Impacts Immunogenicity. Journal of Immunology, 2013, 190, 220-230.	0.8	59
79	Capillary Electrophoresis/Mass Spectrometry of APTS-Labeled Glycans for the Identification of Unknown Glycan Species in Capillary Electrophoresis/Laser-Induced Fluorescence Systems. Analytical Chemistry, 2013, 85, 10218-10224.	6.5	68
80	Development of a highâ€throughput glycoanalysis method for the characterization of oligosaccharides in human milk utilizing multiplexed capillary gel electrophoresis with laserâ€induced fluorescence detection. Electrophoresis, 2013, 34, 2323-2336.	2.4	43
81	Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. Molecular BioSystems, 2013, 9, 578-585.	2.9	93
82	ProteoCloud: A full-featured open source proteomics cloud computing pipeline. Journal of Proteomics, 2013, 88, 104-108.	2.4	34
83	Impact of cultivation conditions on <i>N</i> â€glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Biotechnology and Bioengineering, 2013, 110, 1691-1703.	3.3	23
84	Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Systematic and Applied Microbiology, 2013, 36, 330-338.	2.8	182
85	Quantitative mapping of glycoprotein microâ€heterogeneity and macroâ€heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. Journal of Mass Spectrometry, 2013, 48, 627-639.	1.6	130
86	The Minimum Information Required for a Glycomics Experiment (MIRAGE) Project: Improving the Standards for Reporting Mass-spectrometry-based Glycoanalytic Data. Molecular and Cellular Proteomics, 2013, 12, 991-995.	3.8	109
87	glyXalign: Highâ€throughput migration time alignment preprocessing of electrophoretic data retrieved via multiplexed capillary gel electrophoresis with laserâ€induced fluorescence detectionâ€based glycoprofiling. Electrophoresis, 2013, 34, 2311-2315.	2.4	14
88	Glycoproteomic Analysis of Human Fibrinogen Reveals Novel Regions of O-Glycosylation. Journal of Proteome Research, 2012, 11, 5804-5814.	3.7	41
89	Redâ€Emitting Rhodamines with Hydroxylated, Sulfonated, and Phosphorylated Dye Residues and Their Use in Fluorescence Nanoscopy. Chemistry - A European Journal, 2012, 18, 12986-12998.	3.3	48
90	Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Canadian Journal of Microbiology, 2012, 58, 917-922.	1.7	40

#	Article	IF	CITATIONS
91	Proteomic tracking and analysis of a bacterial mixed culture. Proteomics, 2012, 12, 1893-1901.	2.2	21
92	MALDIâ€TOFâ€MS analysis of sialylated glycans and glycopeptides using 4 hloroâ€Î±â€€yanocinnamic acid matrix. Proteomics, 2012, 12, 1337-1348.	2.2	52
93	Limonade durch Fermentation. Chemie in Unserer Zeit, 2012, 46, 60-61.	0.1	0
94	Optimized CGE-LIF-Based Glycan Analysis for High-Throughput Applications. , 2012, , 599-603.		3
95	Impact of Host Cell Line Adaptation on Quasispecies Composition and Glycosylation of Influenza A Virus Hemagglutinin. PLoS ONE, 2011, 6, e27989.	2.5	39
96	Animal-Human Health Interface and community based surveillance in Vietnam-a strategy under Mekong Basin Disease Surveillance Cooperation (MBDS). BMC Proceedings, 2011, 5, P113.	1.6	1
97	Impact of different influenza cultivation conditions on HA N-Glycosylation. BMC Proceedings, 2011, 5, P113.	1.6	4
98	Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3. AMB Express, 2011, 1, 8.	3.0	27
99	Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics, 2011, 11, 2738-2744.	2.2	40
100	Highâ€density microcarrier cell cultures for influenza virus production. Biotechnology Progress, 2011, 27, 241-250.	2.6	28
101	Impact of Influenza Virus Adaptation Status on HA <i>N</i> -Glycosylation Patterns in Cell Culture-Based Vaccine Production. Journal of Carbohydrate Chemistry, 2011, 30, 281-290.	1.1	6
102	MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Applied Microbiology and Biotechnology, 2010, 88, 461-475.	3.6	79
103	Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome. Journal of Proteomics, 2010, 73, 1461-1478.	2.4	54
104	Virus–host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: A proteomic approach. Journal of Proteomics, 2010, 73, 1656-1669.	2.4	29
105	Guidelines for reporting the use of capillary electrophoresis in proteomics. Nature Biotechnology, 2010, 28, 654-655.	17.5	24
106	Optimized Workflow for Preparation of APTS-Labeled N-Glycans Allowing High-Throughput Analysis of Human Plasma Glycomes using 48-Channel Multiplexed CGE-LIF. Journal of Proteome Research, 2010, 9, 6655-6664.	3.7	140
107	Quantitative analysis of cellular proteome alterations in human influenza A virusâ€infected mammalian cell lines. Proteomics, 2009, 9, 3316-3327.	2.2	97
108	Atmospheric Pressure Free Liquid Infrared MALDI Mass Spectrometry: Toward a combined ESI/MALDI-Liquid Chromatography Interface. Analytical Chemistry, 2009, 81, 443-452.	6.5	24

#	Article	IF	CITATIONS
109	Glycan analysis in cell culture-based influenza vaccine production: Influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine, 2009, 27, 4325-4336.	3.8	76
110	<i>N</i> â€glycan analysis by CGE–LIF: Profiling influenza A virus hemagglutinin <i>N</i> â€glycosylation during vaccine production. Electrophoresis, 2008, 29, 4203-4214.	2.4	86
111	Splitless on-line coupling of capillary high-performance liquid chromatography, capillary electrochromatography and pressurized capillary electrochromatography with nuclear magnetic resonance spectroscopy. Analytical and Bioanalytical Chemistry, 2003, 376, 1053-1061.	3.7	28
112	Perfusive flow and intraparticle distribution of a neutral analyte in capillary electrochromatography. Electrophoresis, 2003, 24, 4241-4253.	2.4	35
113	Liquid flow in capillary (electro)chromatography: Generation and control of micro- and nanoliter volumes. Journal of Separation Science, 2003, 26, 453-470.	2.5	24
114	Quantitative Study of Electrokinetic Transport in Porous Media by Confocal Laser Scanning Microscopy. Langmuir, 2003, 19, 4527-4531.	3.5	30
115	Electroosmotic Flow Phenomena in Packed Capillaries:  From the Interstitial Velocities to Intraparticle and Boundary Layer Mass Transfer. Journal of Physical Chemistry B, 2002, 106, 12709-12721.	2.6	28
116	Influence of Pressure upon Coupling Pressurized Capillary Electrochromatography with Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry, 2001, 73, 3234-3239.	6.5	60
117	Electrokinetics in Fixed Beds: Experimental Demonstration of Electroosmotic Perfusion. Angewandte Chemie - International Edition, 2001, 40, 1684-1687.	13.8	24
118	Improved column preparation and performance in capillary electrochromatography. Journal of Chromatography A, 2000, 887, 367-378.	3.7	49
119	Electroosmotic and Pressure-Driven Flow in Open and Packed Capillaries:  Velocity Distributions and Fluid Dispersion. Analytical Chemistry, 2000, 72, 2292-2301.	6.5	118
120	Fritless capillary electrochromatography. Electrophoresis, 1999, 20, 43-49.	2.4	69