Monica Nardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774223/publications.pdf

Version: 2024-02-01

126907 243625 2,533 85 33 44 h-index citations g-index papers 89 89 89 2681 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Highly Efficient Synthesis of $1,2$ -Disubstituted Benzimidazoles Using Microwave Irradiation. Molecules, $2022, 27, 1751$.	3.8	3
2	Eco-Friendly Synthesis of PEtOz-PA: A Promising Polymer for the Formulation of Curcumin-Loaded Micelles. Molecules, 2022, 27, 3788.	3.8	1
3	Lipid Peroxidation in Algae Oil: Antagonist Effects of Natural Antioxidants. Molecules, 2022, 27, 4453.	3.8	2
4	Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review. Natural Product Reports, 2021, 38, 444-469.	10.3	11
5	Green Semisynthetic Cascade to Ligstroside, Ligstroside Aglycone, and Oleocanthal. ACS Sustainable Chemistry and Engineering, 2021, 9, 12614-12622.	6.7	8
6	Production of Plant-Derived Oleuropein Aglycone by a Combined Membrane Process and Evaluation of Its Breast Anticancer Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 908.	4.1	18
7	Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H2O2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules, 2020, 25, 5472.	3.8	3
8	Montmorillonite K10: An Efficient Organo-Heterogeneous Catalyst for Synthesis of Benzimidazole Derivatives. Catalysts, 2020, 10, 845.	3.5	22
9	Natural Deep Eutectic Solvent as Extraction Media for the Main Phenolic Compounds from Olive Oil Processing Wastes. Antioxidants, 2020, 9, 513.	5.1	62
10	Green Synthesis of Privileged Benzimidazole Scaffolds Using Active Deep Eutectic Solvent. Molecules, 2019, 24, 2885.	3.8	40
11	Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers, 2019, 11, 990.	3.7	47
12	Synthesis, Biological and In Silico Evaluation of Pure Nucleobase-Containing Spiro (Indane-Isoxazolidine) Derivatives as Potential Inhibitors of MDM2–p53 Interaction. Molecules, 2019, 24, 2909.	3.8	20
13	Eco-Friendly Extraction and Characterisation of Nutraceuticals from Olive Leaves. Molecules, 2019, 24, 3481.	3.8	37
14	Synthesis and preliminary evaluation of the anti-cancer activity on A549 lung cancer cells of a series of unsaturated disulfides. MedChemComm, 2019, 10, 116-119.	3.4	17
15	Regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles by 1,3-dipolar cycloaddition: Role of $Er(OTf)3$, ionic liquid and water. Tetrahedron Letters, 2019, 60, 672-674.	1.4	32
16	Montmorillonite K10-Catalyzed Solvent-Free Conversion of Furfural into Cyclopentenones. Catalysts, 2019, 9, 301.	3.5	18
17	A Multivariate Statistical Analyses of Membrane Performance in the Clarification of Citrus Press Liquor. ChemEngineering, 2019, 3, 10.	2.4	2
18	Combined Ultrasound/Microwave Chemocatalytic Method for Selective Conversion of Cellulose into Lactic Acid. Scientific Reports, 2019, 9, 18858.	3.3	15

#	Article	IF	CITATIONS
19	Sustainable and Selective Extraction of Lipids and Bioactive Compounds from Microalgae. Molecules, 2019, 24, 4347.	3.8	21
20	Antiproliferative activity of novel isatinyl/indanyl nitrones (INs) as potential spin trapping agents of free radical intermediates. MedChemComm, 2018, 9, 299-304.	3.4	16
21	Simple and efficient sustainable semi-synthesis of oleacein [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] as potential additive for edible oils. Food Chemistry, 2018, 245, 410-414.	8.2	33
22	Peracetylation as a strategy to improve oleuropein stability and its affinity to fatty foods. Food and Function, 2018, 9, 5759-5767.	4.6	17
23	Eco-Friendly Synthesis of Lipophilic EGCG Derivatives and Antitumor and Antioxidant Evaluation. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	11
24	Efficient synthesis of organic thioacetates in water. Organic and Biomolecular Chemistry, 2018, 16, 7753-7759.	2.8	17
25	Biorenewable Deep Eutectic Solvent for Selective and Scalable Conversion of Furfural into Cyclopentenone Derivatives. Molecules, 2018, 23, 1891.	3.8	47
26	Erbium Salts as Non-Toxic Catalysts Compatible with Alternative Reaction Media. Sustainability, 2018, 10, 721.	3.2	16
27	First multicomponent reaction exploiting glycerol carbonate synthesis. Journal of Cleaner Production, 2018, 202, 504-509.	9.3	22
28	Synthesis of 1,5-Functionalized 1,2,3-Triazoles Using Ionic Liquid/Iron(III) Chloride as an Efficient and Reusable Homogeneous Catalyst. Catalysts, 2018, 8, 364.	3.5	31
29	Biochemical and chemical characterization of Cynara cardunculus L. extract and its potential use as co-adjuvant therapy of chronic myeloid leukemia. Journal of Ethnopharmacology, 2017, 202, 184-191.	4.1	16
30	An eco-friendly tandem tosylation/Ferrier N -glycosylation of amines catalyzed by Er(OTf) 3 in 2-MeTHF. Tetrahedron Letters, 2017, 58, 1721-1726.	1.4	18
31	Nitrones and nucleobase-containing spiro-isoxazolidines derived from isatin and indanone: solvent-free microwave-assisted stereoselective synthesis and theoretical calculations. RSC Advances, 2017, 7, 48980-48988.	3 . 6	24
32	Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural. Green Chemistry, 2017, 19, 5403-5411.	9.0	55
33	Simple and efficient Fmoc removal in ionic liquid. RSC Advances, 2017, 7, 36482-36491.	3 . 6	29
34	Synthesis and antioxidant evaluation of lipophilic oleuropein aglycone derivatives. Food and Function, 2017, 8, 4684-4692.	4.6	39
35	Selective Acetylation of Small Biomolecules and Their Derivatives Catalyzed by Er(OTf)3. Catalysts, 2017, 7, 269.	3 . 5	24
36	Microwave-Assisted 1,3-Dipolar Cyclo-addition: Recent Advances In Synthesis of Isoxazolidines. Mini-Reviews in Organic Chemistry, 2017, 14, 136-142.	1.3	14

#	Article	IF	CITATIONS
37	Tunable microwave-assisted method for the solvent-free and catalyst-free peracetylation of natural products. Beilstein Journal of Organic Chemistry, 2016, 12, 2222-2233.	2.2	20
38	Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf) ₃ catalyst in the reaction selectivity. Beilstein Journal of Organic Chemistry, 2016, 12, 2410-2419.	2.2	41
39	Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 470-475.	2.8	80
40	Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones. Arabian Journal of Chemistry, 2016, 9, 25-31.	4.9	19
41	"On Water―MW-Assisted Synthesis of Hydroxytyrosol Fatty Esters. ACS Sustainable Chemistry and Engineering, 2016, 4, 661-665.	6.7	20
42	Determination of total organic carbon on hybrid organic-inorganic mesoporous silica by FT-NIR spectroscopy. RSC Advances, 2016, 6, 18909-18915.	3.6	4
43	Development of one-pot three component reaction for the synthesis of N′-aryl-N-cyanoformamidines, essential precursors of formamidine pesticides family. Arabian Journal of Chemistry, 2016, 9, 32-37.	4.9	7
44	Efficient Organocatalyst Supported on a Simple Ionic Liquid as a Recoverable System for the Asymmetric Diels–Alder Reaction in the Presence of Water. ChemCatChem, 2015, 7, 830-835.	3.7	32
45	Eco-friendly stereoselective reduction of \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds by Er(OTf)3/NaBH4 in 2-MeTHF. Tetrahedron, 2015, 71, 1132-1135.	1.9	35
46	Aqueous MW eco-friendly protocol for amino group protection. RSC Advances, 2015, 5, 18751-18760.	3.6	44
47	Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate]. Food Chemistry, 2014, 162, 89-93.	8.2	44
48	Facile Ecofriendly Synthesis of Monastrol and Its Structural Isomers via Biginelli Reaction. ACS Sustainable Chemistry and Engineering, 2014, 2, 1228-1233.	6.7	50
49	An Erbium-Based Bifuctional Heterogeneous Catalyst: A Cooperative Route Towards C-C Bond Formation. Molecules, 2014, 19, 10218-10229.	3.8	15
50	Non-Conventional Methodologies in the Synthesis of 1-Indanones. Molecules, 2014, 19, 5599-5610.	3.8	22
51	Hybrid MCM-41 grafted by a general microwave-assisted procedure: a characterization study. Journal of Porous Materials, 2013, 20, 865-873.	2.6	20
52	Evaluation of dialdehydic anti-inflammatory active principles in extra-virgin olive oil by reactive paper spray mass spectrometry. International Journal of Mass Spectrometry, 2013, 352, 87-91.	1.5	47
53	Catalyst-free tosylation of lipophilic alcohols in water. RSC Advances, 2013, 3, 2548.	3.6	18
54	Erbium(III) Chloride in Ethyl Lactate as a Smart Ecofriendly System for Efficient and Rapid Stereoselective Synthesis of <i>trans</i> -4,5-Diaminocyclopent-2-enones. ACS Sustainable Chemistry and Engineering, 2013, 1, 541-544.	6.7	49

#	Article	IF	CITATIONS
55	Anti-Inflammatory Effect of 3,4-DHPEA-EDA [2-(3,4-Hydroxyphenyl) ethyl (3S, 4E)-4-Formyl-3-(2-Oxoethyl)Hex-4-Enoate] on Primary Human Vascular Endothelial Cells. Current Medicinal Chemistry, 2012, 19, 4006-4013.	2.4	47
56	One-Pot Synthesis of Dibenzo[b,e][1,4]diazepin-1-ones. Synthesis, 2012, 44, 800-804.	2.3	24
57	High-Throughput Assay of Oleopentanedialdheydes in Extra Virgin Olive Oil by the UHPLCâ^'ESI-MS/MS and Isotope Dilution Methods. Analytical Chemistry, 2011, 83, 1990-1995.	6.5	37
58	An eco-sustainable erbium(iii)-catalyzed method for formation/cleavage of O-tert-butoxy carbonates. Green Chemistry, 2011, 13, 436.	9.0	40
59	Lipophilic Hydroxytyrosol Esters: Fatty Acid Conjugates for Potential Topical Administration. Journal of Natural Products, 2011, 74, 2377-2381.	3.0	35
60	1,5-Benzoheteroazepines through eco-friendly general condensation reactions. Tetrahedron Letters, 2011, 52, 4827-4834.	1.4	49
61	An Eco-Sustainable Erbium(III) Triflate Catalyzed Formation and Cleavage of tert-Butyl Ethers. Synthesis, 2011, 2011, 73-78.	2.3	19
62	Efficient ring opening of epoxides with trimethylsilyl azide and cyanide catalyzed by erbium(III) triflate. Tetrahedron Letters, 2010, 51, 5150-5153.	1.4	27
63	A New Microwave-Assisted Organocatalytic Solvent-Free Synthesis of Optically Enriched Michael Adducts. Synlett, 2010, 2010, 1849-1853.	1.8	28
64	Erbium(III) Triflate is a Highly Efficient Catalyst for the Synthesis of \hat{l}^2 -Alkoxy Alcohols, 1,2-Diols and \hat{l}^2 -Hydroxy Sulfides by Ring Opening of Epoxides. Synthesis, 2009, 2009, 3433-3438.	2.3	16
65	Synthesis, Biological Evaluation, and Molecular Modeling of Oleuropein and Its Semisynthetic Derivatives as Cyclooxygenase Inhibitors. Journal of Agricultural and Food Chemistry, 2009, 57, 11161-11167.	5 . 2	96
66	General MW-assisted grafting of MCM-41: Study of the dependence on time dielectric heating and solvent. Green Chemistry, 2009, 11, 770.	9.0	33
67	Erbium Triflate a Very Powerful Catalyst. Mini-Reviews in Organic Chemistry, 2009, 6, 86-94.	1.3	5
68	A Mesoporous Er ^{III} â€MCMâ€41 Catalyst for the Cyanosilylation of Aldehydes and Ketones under Solventâ€free Conditions. ChemSusChem, 2008, 1, 916-919.	6.8	55
69	Solvent-free, microwave assisted 1,3-cycloaddition of nitrones with vinyl nucleobases for the synthesis of N,O-nucleosides. Tetrahedron, 2008, 64, 8078-8081.	1.9	34
70	MW-assisted Er(OTf)3-catalyzed mild cleavage of isopropylidene acetals in Tricky substrates. Tetrahedron Letters, 2008, 49, 1961-1964.	1.4	30
71	Highly efficient and versatile chemoselective addition of amines to epoxides in water catalyzed by erbium(III) triflate. Tetrahedron Letters, 2008, 49, 2289-2293.	1.4	65
72	Simple and efficient MW-assisted cleavage of acetals and ketals in pure water. Tetrahedron Letters, 2007, 48, 8623-8627.	1.4	36

#	Article	IF	CITATION
73	A facile Er(OTf)3-catalyzed synthesis of 2,3-unsaturated O- and S-glycosides. Carbohydrate Research, 2007, 342, 2125-2131.	2.3	47
74	Erbium(III) Triflate: A Valuable Catalyst for the Synthesis of Aldimines, Ketimines, and Enaminones. Synthesis, 2006, 2006, 1127-1132.	2.3	48
75	Er(OTf)3as New Efficient Catalyst for the Stereoselective Synthesis of C-Pseudoglycals. Synthesis, 2006, 2006, 332-338.	2.3	19
76	Er(OTf)3 as a Valuable Catalyst in a Short Synthesis of 2′,3′-Dideoxy Pyranosyl Nucleosides via Ferrier Rearrangement. Synthesis, 2006, 2006, 2608-2612.	2.3	28
77	1,2-Diacetates by epoxide ring opening promoted by erbium(III) triflate. Arkivoc, 2006, 2006, 67-73.	0.5	10
78	Erbium triflate: a valuable and non-toxic catalyst for the synthesis of acylals and enol ethers. Arkivoc, 2006, 2006, 181-189.	0.5	10
79	Synthesis of Acetonides from Epoxides Catalyzed by Erbium(III) Triflate. Advanced Synthesis and Catalysis, 2005, 347, 1447-1450.	4.3	37
80	Mild and efficient method for the cleavage of benzylidene acetals by using erbium (iii) triflate. Organic and Biomolecular Chemistry, 2005, 3, 4129.	2.8	34
81	Er(OTf)3as a Mild Cleaving Agents for Acetals and Ketals. Synthesis, 2004, 2004, 496-498.	2.3	3
82	Erbium(III) Triflate: A Valuable Catalyst for the Rearrangement of Epoxides to Aldehydes and Ketones. Synlett, 2004, 2004, 2633-2635.	1.8	51
83	Cerium(III) Triflate versus Cerium(III) Chloride: Anion Dependence of Lewis Acid Behavior in the Deprotection of PMB Ethers. European Journal of Organic Chemistry, 2004, 2004, 2176-2180.	2.4	34
84	Per-O-acetylation of sugars catalyzed by Ce(OTf)3. Green Chemistry, 2004, 6, 191.	9.0	45
85	Highly efficient and versatile acetylation of alcohols catalyzed by cerium(III) triflate. Tetrahedron	1.4	111