Christophe Benoist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742198/publications.pdf

Version: 2024-02-01

7096 14759 31,413 125 78 127 citations h-index g-index papers 132 132 132 35622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IL-17Aâ \in "producing $\hat{I}^3\hat{I}^T$ cells promote muscle regeneration in a microbiota-dependent manner. Journal of Experimental Medicine, 2022, 219, .	8.5	17
2	A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune–epithelial interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
3	The ImmGen consortium OpenSource T cell project. Nature Immunology, 2022, 23, 643-644.	14.5	3
4	FoxP3 associates with enhancer-promoter loops to regulate T-specific gene expression Science Immunology, 2022, 7, eabj9836.	11.9	12
5	Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nature Immunology, 2021, 22, 216-228.	14.5	116
6	PPAR \hat{I}^3 marks splenic precursors of multiple nonlymphoid-tissue Treg compartments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
7	Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory TÂcells in the gut. Immunity, 2021, 54, 499-513.e5.	14.3	63
8	A combination of cyclophosphamide and interleukin-2 allows CD4+ T cells converted to Tregs to control <i>scurfy</i> syndrome. Blood, 2021, 137, 2326-2336.	1.4	9
9	Single-cell analysis of FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+ T cell perturbations. Nature Immunology, 2021, 22, 607-619.	14.5	35
10	Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory TÂcells during obesity. Cell Metabolism, 2021, 33, 1610-1623.e5.	16.2	48
11	Profound Treg perturbations correlate with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	104
12	Aire regulates chromatin looping by evicting CTCF from domain boundaries and favoring accumulation of cohesin on superenhancers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
13	Allelic variation in class I HLA determines CD8 T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2. Science Immunology, 2021, , eabk3070.	11.9	10
14	Microbial bile acid metabolites modulate gut RORγ+Âregulatory T cell homeostasis. Nature, 2020, 577, 410-415.	27.8	568
15	Developmental and cellular age direct conversion of CD4+ T cells into RORγ+ or Helios+ colon Treg cells. Journal of Experimental Medicine, 2020, 217, .	8.5	50
16	Deep learning of immune cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25655-25666.	7.1	64
17	An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell, 2020, 181, 1276-1290.e13.	28.9	110
18	Neuronal, stromal, and T-regulatory cell crosstalk in murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5402-5408.	7.1	32

#	Article	IF	CITATIONS
19	CD4+ teff cell heterogeneity: the perspective from single-cell transcriptomics. Current Opinion in Immunology, 2020, 63, 61-67.	5.5	18
20	Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. ELife, 2020, 9, .	6.0	21
21	The NF-ÎB RelA Transcription Factor Is Critical for Regulatory T Cell Activation and Stability. Frontiers in Immunology, 2019, 10, 2487.	4.8	35
22	The cis-Regulatory Atlas of the Mouse Immune System. Cell, 2019, 176, 897-912.e20.	28.9	315
23	Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Science Immunology, 2019, 4, .	11.9	169
24	T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33. Journal of Experimental Medicine, 2019, 216, 1328-1344.	8.5	27
25	T cell receptor specificity drives accumulation of a reparative population of regulatory T cells within acutely injured skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26727-26733.	7.1	43
26	T _{reg} cells limit IFN- \hat{I}^3 production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2585-E2593.	7.1	114
27	Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nature Immunology, 2018, 19, 291-301.	14.5	312
28	FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E253-E262.	7.1	22
29	Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10672-E10681.	7.1	108
30	Molecular diversification of regulatory T cells in nonlymphoid tissues. Science Immunology, 2018, 3, .	11.9	123
31	Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nature Genetics, 2018, 50, 1140-1150.	21.4	139
32	TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype. Cell, 2018, 174, 285-299.e12.	28.9	165
33	The transcriptional regulator Aire binds to and activates super-enhancers. Nature Immunology, 2017, 18, 263-273.	14.5	130
34	Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 2017, 168, 928-943.e11.	28.9	554
35	An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell, 2017, 168, 1135-1148.e12.	28.9	182
36	<i>Flicr</i> , a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3472-E3480.	7.1	141

#	Article	IF	Citations
37	Imaging the emergence and natural progression of spontaneous autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7776-E7785.	7.1	64
38	Protective major histocompatibility complex allele prevents type 1 diabetes by shaping the intestinal microbiota early in ontogeny. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9671-9676.	7.1	75
39	Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nature Immunology, 2017, 18, 1238-1248.	14.5	117
40	The Human Cell Atlas. ELife, 2017, 6, .	6.0	1,547
41	Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE, 2016, 11, e0148252.	2.5	90
42	Tissue Tregs. Annual Review of Immunology, 2016, 34, 609-633.	21.8	442
43	Network pharmacology of JAK inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9852-9857.	7.1	59
44	Singular role for T-BET ⁺ CXCR3 ⁺ regulatory T cells in protection from autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14103-14108.	7.1	89
45	Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8141-E8150.	7.1	331
46	Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing $\hat{I}^3\hat{I}$ T Cells to Promote Immunologic Tolerance. Immunity, 2016, 45, 999-1012.	14.3	54
47	Parsing the Interferon Transcriptional Network and Its Disease Associations. Cell, 2016, 164, 564-578.	28.9	250
48	Unstable FoxP3 ⁺ T regulatory cells in NZW mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1345-1350.	7.1	26
49	Promiscuity Promotes Tolerance. Journal of Immunology, 2016, 196, 2913-2914.	0.8	1
50	Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. Immunity, 2016, 44, 355-367.	14.3	383
51	Rapid, high efficiency isolation of pancreatic ß-cells. Scientific Reports, 2015, 5, 13681.	3.3	17
52	Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14942-14947.	7.1	52
53	Appearance and disappearance of the mRNA signature characteristic of T $<$ sub $>$ reg $<$ /sub $>$ cells in visceral adipose tissue: Age, diet, and PPARÎ 3 effects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 482-487.	7.1	156
54	Genomic responses to inflammation in mouse models mimic humans: We concur, apples to oranges comparisons won't do. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E346.	7.1	41

#	Article	IF	CITATIONS
55	Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2139-2144.	7.1	123
56	Population dynamics of islet-infiltrating cells in autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1511-1516.	7.1	89
57	Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4448-57.	7.1	62
58	Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nature Immunology, 2015, 16, 942-949.	14.5	195
59	ImmVar project: Insights and design considerations for future studies of "healthy―immune variation. Seminars in Immunology, 2015, 27, 51-57.	5.6	53
60	A pharmacogenetic study implicates <scp><i>SLC9a9</i></scp> in multiple sclerosis disease activity. Annals of Neurology, 2015, 78, 115-127.	5. 3	39
61	Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science, 2015, 348, 589-594.	12.6	373
62	Antigen- and Cytokine-Driven Accumulation of Regulatory T Cells in Visceral Adipose Tissue of Lean Mice. Cell Metabolism, 2015, 21, 543-557.	16.2	304
63	Individual intestinal symbionts induce a distinct population of RORγ ⁺ regulatory T cells. Science, 2015, 349, 993-997.	12.6	707
64	Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and \hat{l}^2 cells. ELife, 2014, 3, e04631.	6.0	69
65	Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains. Journal of Immunology, 2014, 193, 4485-4496.	0.8	44
66	Interindividual variation in human T regulatory cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1111-20.	7.1	112
67	Treg Cells Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit Proinflammatory Th1 and Th17 Cell Responses. Immunity, 2014, 40, 569-581.	14.3	702
68	Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6696-6701.	7.1	154
69	Fluorescent Exendin-4 Derivatives for Pancreatic Î ² -Cell Analysis. Bioconjugate Chemistry, 2014, 25, 171-177.	3.6	37
70	Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16466-16471.	7.1	50
71	O3-04-05: EXPRESSION QTL ANALYSIS FROM PRIMARY IMMUNE CELLS IDENTIFIES NOVEL REGULATORY EFFECTS UNDERLYING ALZHEIMER'S DISEASE SUSCEPTIBILITY. , 2014, 10, P216-P216.		0
72	Denervation protects limbs from inflammatory arthritis via an impact on the microvasculature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11419-11424.	7.1	40

#	Article	lF	CITATIONS
73	Intersection of population variation and autoimmunity genetics in human T cell activation. Science, 2014, 345, 1254665.	12.6	218
74	A Special Population of Regulatory T Cells Potentiates Muscle Repair. Cell, 2013, 155, 1282-1295.	28.9	954
75	Regulatory T cells in nonlymphoid tissues. Nature Immunology, 2013, 14, 1007-1013.	14.5	308
76	Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. Journal of Experimental Medicine, 2013, 210, 1153-1165.	8.5	120
77	Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1023-1028.	7.1	72
78	Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 535-540.	7.1	202
79	Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3891-3896.	7.1	101
80	PPAR- \hat{l}^3 is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 2012, 486, 549-553.	27.8	945
81	Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nature Immunology, 2012, 13, 361-368.	14.5	98
82	Treg Cells, Life History, and Diversity. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007021-a007021.	5.5	109
83	Consortium biology in immunology: the perspective from the Immunological Genome Project. Nature Reviews Immunology, 2012, 12, 734-740.	22.7	37
84	An N-Terminal Mutation of the Foxp3 Transcription Factor Alleviates Arthritis but Exacerbates Diabetes. Immunity, 2012, 36, 731-741.	14.3	97
85	The immune system's involvement in obesity-driven type 2 diabetes. Seminars in Immunology, 2012, 24, 436-442.	5 . 6	137
86	A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells. Nature Immunology, 2012, 13, 972-980.	14.5	249
87	The neuropeptide neuromedin U promotes autoantibody-mediated arthritis. Arthritis Research and Therapy, 2012, 14, R29.	3 . 5	15
88	Tissular Tregs: A unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Seminars in Immunology, 2011, 23, 431-437.	5 . 6	108
89	Structure of a Domain-Swapped FOXP3 Dimer on DNA and Its Function in Regulatory T Cells. Immunity, 2011, 34, 479-491.	14.3	140
90	Flow Cytometry, Amped Up. Science, 2011, 332, 677-678.	12.6	35

#	Article	IF	Citations
91	Stability of the Regulatory T Cell Lineage in Vivo. Science, 2010, 329, 1667-1671.	12.6	611
92	Neutrophils in a mouse model of autoantibodyâ€mediated arthritis: Critical producers of Fc receptor γ, the receptor for C5a, and lymphocyte functionâ^'associated antigen 1. Arthritis and Rheumatism, 2010, 62, 753-764.	6.7	95
93	Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5919-5924.	7.1	204
94	Global relevance of Aire binding to hypomethylated lysine-4 of histone-3. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13016-13021.	7.1	69
95	Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. Journal of Experimental Medicine, 2009, 206, 1245-1252.	8.5	148
96	Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunology, 2009, 10, 689-695.	14.5	456
97	Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 2009, 15, 930-939.	30.7	1,790
98	How Punctual Ablation of Regulatory T Cells Unleashes an Autoimmune Lesion within the Pancreatic Islets. Immunity, 2009, 31, 654-664.	14.3	212
99	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576
100	Genetic Inversion in Mast Cell-Deficient Wsh Mice Interrupts Corin and Manifests as Hematopoietic and Cardiac Aberrancy. American Journal of Pathology, 2008, 173, 1693-1701.	3.8	191
101	Adaptation of TCR Repertoires to Self-Peptides in Regulatory and Nonregulatory CD4+ T Cells. Journal of Immunology, 2007, 178, 7032-7041.	0.8	171
102	Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2325-2330.	7.1	168
103	Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk. Journal of Experimental Medicine, 2007, 204, 1911-1922.	8.5	84
104	Foxp3 Transcription-Factor-Dependent and -Independent Regulation of the Regulatory T Cell Transcriptional Signature. Immunity, 2007, 27, 786-800.	14.3	563
105	Circulating C3 is necessary and sufficient for induction of autoantibodyâ€mediated arthritis in a mouse model. Arthritis and Rheumatism, 2007, 56, 2968-2974.	6.7	21
106	Yes, it does. Nature Reviews Immunology, 2007, 7, 1-1.	22.7	12
107	The K/BxN Mouse Model of Inflammatory Arthritis. Methods in Molecular Medicine, 2007, 136, 269-282.	0.8	85
108	FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell, 2006, 126, 375-387.	28.9	1,019

#	Article	IF	CITATIONS
109	A Plaidoyer for 'Systems Immunology'. Immunological Reviews, 2006, 210, 229-234.	6.0	47
110	Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nature Immunology, 2006, 7, 284-292.	14.5	171
111	Modifier loci condition autoimmunity provoked by Aire deficiency. Journal of Experimental Medicine, 2005, 202, 805-815.	8.5	206
112	The Cellular Mechanism of Aire Control of T Cell Tolerance. Immunity, 2005, 23, 227-239.	14.3	559
113	The Role of Antibodies in Mouse Models of Rheumatoid Arthritis, and Relevance to Human Disease. Advances in Immunology, 2004, 82, 217-248.	2.2	100
114	Critical Roles for Interleukin 1 and Tumor Necrosis Factor \hat{l}_{\pm} in Antibody-induced Arthritis. Journal of Experimental Medicine, 2002, 196, 77-85.	8.5	307
115	Mast Cells: A Cellular Link Between Autoantibodies and Inflammatory Arthritis. Science, 2002, 297, 1689-1692.	12.6	722
116	Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein. Science, 2002, 298, 1395-1401.	12.6	2,159
117	Arthritis Critically Dependent on Innate Immune System Players. Immunity, 2002, 16, 157-168.	14.3	631
118	Mast cells in autoimmune disease. Nature, 2002, 420, 875-878.	27.8	274
119	Î ² -Cell death during progression to diabetes. Nature, 2001, 414, 792-798.	27.8	805
120	Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry?. Nature Immunology, 2001, 2, 797-801.	14.5	368
121	From Systemic T Cell Self-Reactivity to Organ-Specific Autoimmune Disease via Immunoglobulins. Immunity, 1999, 10, 451-461.	14.3	646
122	Organ-Specific Disease Provoked by Systemic Autoimmunity. Cell, 1996, 87, 811-822.	28.9	828
123	The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. European Journal of Immunology, 1996, 26, 1762-1769.	2.9	206
124	Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. European Journal of Immunology, 1993, 23, 3358-3360.	2.9	199
125	Mice lacking MHC class II molecules. Cell, 1991, 66, 1051-1066.	28.9	876