
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742072/publications.pdf Version: 2024-02-01

ΙΝΟSAΝ ΧΗ

#	Article	IF	CITATIONS
1	Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. Journal of Colloid and Interface Science, 2022, 608, 3168-3177.	9.4	37
2	Competition of Hydrogen Bonds and Coordinate Bonds Induces a Reversible Crystal Transformation. Inorganic Chemistry, 2022, 61, 2086-2092.	4.0	6
3	Step-by-Step Mechanism Insights into the TiO ₂ /Ce ₂ S ₃ S-Scheme Photocatalyst for Enhanced Aniline Production with Water as a Proton Source. ACS Catalysis, 2022, 12, 164-172.	11.2	117
4	Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visibleâ€light photocatalytic H ₂ evolution. , 2022, 1, 294-308.		92
5	Stepped Porous Carbonâ€Multilayer Graphene@Fe ₃ C/Fe ₃ N Membrane to Inhibit the Polysulfides Shuttle for Highâ€Performance Lithium–Sulfur Batteries. Advanced Sustainable Systems, 2022, 6, .	5.3	1
6	Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chemistry, 2022, 24, 4728-4741.	9.0	13
7	Integrating a Metal–Organic Framework into Natural Spruce Wood for Efficient Solarâ€Powered Water Evaporation. Solar Rrl, 2022, 6, .	5.8	13
8	Ligninâ€Incorporated Supramolecular Copolymerization Yielding gâ€C ₃ N ₄ Nanoarchitectures for Efficient Photocatalytic Hydrogen Evolution. Solar Rrl, 2021, 5, 2000486.	5.8	46
9	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chemical Engineering Journal, 2021, 420, 127637.	12.7	47
10	Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward High‣fficiency Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000414.	5.8	83
11	Electrospun TiO ₂ â€Based Photocatalysts. Solar Rrl, 2021, 5, 2000571.	5.8	46
12	Superelastic, Fatigue-Resistant, and Flame-Retardant Spongy Conductor for Human Motion Detection against a Harsh High-Temperature Condition. ACS Applied Materials & Interfaces, 2021, 13, 7580-7591.	8.0	16
13	Ultrasound-Triggered Assembly of Covalent Triazine Framework for Synthesizing Heteroatom-Doped Carbon Nanoflowers Boosting Metal-Free Bifunctional Electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 13328-13337.	8.0	71
14	Recent advances in functional fiber electronics. SusMat, 2021, 1, 105-126.	14.9	77
15	Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. Macromolecules, 2021, 54, 3832-3844.	4.8	45
16	Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. Research, 2021, 2021, 9761625.	5.7	40
17	Near-field enhancement by plasmonic antennas for photocatalytic Suzuki-Miyaura cross-coupling reactions. Journal of Catalysis, 2021, 397, 205-211.	6.2	14
18	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chemical Engineering Journal, 2021, 411, 128506.	12.7	88

#	Article	IF	CITATIONS
19	Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Composites Part B: Engineering, 2021, 217, 108901.	12.0	44
20	Unconventional, Gram-Scale Synthesis of a Molecular Dimer Organic Luminogen with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2021, 13, 40441-40450.	8.0	9
21	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	5.8	22
22	Sacrificial Agentâ€Free Photocatalytic Oxygen Evolution from Water Splitting over Ag ₃ PO ₄ /MXene Hybrids. Solar Rrl, 2020, 4, 1900434.	5.8	45
23	Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nature Communications, 2020, 11, 62.	12.8	189
24	Crystal Transformation from the Incorporation of Coordinate Bonds into a Hydrogen-Bonded Network Yields Robust Free-Standing Supramolecular Membranes. Journal of the American Chemical Society, 2020, 142, 479-486.	13.7	35
25	Beyond Hydrogen Evolution: Solar-Driven, Water-Donating Transfer Hydrogenation over Platinum/Carbon Nitride. ACS Catalysis, 2020, 10, 9227-9235.	11.2	68
26	Graphitic Carbon Nitride Films: Emerging Paradigm for Versatile Applications. ACS Applied Materials & Interfaces, 2020, 12, 53571-53591.	8.0	57
27	One-Minute Synthesis of a Supramolecular Hydrogel from Suspension–Gel Transition and the Derived Crystalline, Elastic, and Photoactive Aerogels. ACS Applied Materials & Interfaces, 2020, 12, 53125-53133.	8.0	7
28	Metalâ€Free Multiâ€Heteroatomâ€Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. Small, 2020, 16, e2004342.	10.0	117
29	Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Materials Today Physics, 2020, 15, 100261.	6.0	23
30	Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction. Materials Today Physics, 2020, 15, 100279.	6.0	70
31	Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11, 4613.	12.8	776
32	Sacrificial Agentâ€Free Photocatalytic Oxygen Evolution from Water Splitting over Ag ₃ PO ₄ /MXene Hybrids. Solar Rrl, 2020, 4, 2070082.	5.8	8
33	Colorful Silver/Carbon Nitride Composites Obtained by Photoreduction. Chemical Research in Chinese Universities, 2020, 36, 1136-1140.	2.6	1
34	A bioinspired microreactor with interfacial regulation for maximizing selectivity in a catalytic reaction. Chemical Communications, 2020, 56, 8059-8062.	4.1	4
35	Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. Journal of Hazardous Materials, 2020, 394, 122529.	12.4	118
36	Emerging Dualâ€Channel Transitionâ€Metalâ€Oxide Quasiaerogels by Selfâ€Embedded Templating. Advanced Functional Materials, 2020, 30, 2000024.	14.9	36

#	Article	IF	CITATIONS
37	Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots /TiO2 nanotube arrays using femtosecond transient absorption spectroscopy. Applied Catalysis B: Environmental, 2020, 275, 119151.	20.2	84
38	Reversible Switching of the Amphiphilicity of Organic–Inorganic Hybrids by Adsorption–Desorption Manipulation. Journal of Physical Chemistry C, 2019, 123, 21097-21102.	3.1	1
39	Graphdiyne: A New Photocatalytic CO ₂ Reduction Cocatalyst. Advanced Functional Materials, 2019, 29, 1904256.	14.9	207
40	Selfâ€Templated Conversion of Metallogel into Heterostructured TMP@Carbon Quasiaerogels Boosting Bifunctional Electrocatalysis. Advanced Functional Materials, 2019, 29, 1903660.	14.9	93
41	Solventâ€Exchange Strategy toward Aqueous Dispersible MoS ₂ Nanosheets and Their Nitrogenâ€Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. Small, 2019, 15, e1903816.	10.0	31
42	Constructing 0D FeP Nanodots/2D gâ $\in \mathbb{C}$ 3 N 4 Nanosheets Heterojunction for Highly Improved Photocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 6310-6315.	3.7	33
43	Conjugated Carbon Nitride as an Emerging Luminescent Material: Quantum Dots, Thin Films and Their Applications in Imaging, Sensing, Optoelectronic Devices and Photoelectrochemistry. ChemPhotoChem, 2019, 3, 170-179.	3.0	38
44	Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3664-3672.	10.3	243
45	Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Applied Catalysis B: Environmental, 2019, 256, 117867.	20.2	137
46	3D α-Fe2O3 nanorods arrays@graphene oxide nanosheets as sensing materials for improved gas sensitivity. Chemical Engineering Journal, 2019, 370, 1331-1340.	12.7	70
47	Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P,) Tj ETQq1 1 0.78431 84-94.	4 rgBT /Ov 20.2	erlock 10 Tí 300
48	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 1384-1393.	8.0	56
49	CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2018, 230, 194-202.	20.2	407
50	Hierarchical TiO ₂ /Ni(OH) ₂ composite fibers with enhanced photocatalytic CO ₂ reduction performance. Journal of Materials Chemistry A, 2018, 6, 4729-4736.	10.3	212
51	Graphitic Carbon Nitride as a Distinct Solid Stabilizer for Emulsion Polymerization. Chemistry - A European Journal, 2018, 24, 2286-2291.	3.3	36
52	High-temperature solvent-free sulfidation of MoO ₃ confined in a polypyrrole shell: MoS ₂ nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. Nanoscale, 2018, 10, 7536-7543.	5.6	35
53	2D/2D g-C ₃ N ₄ /MnO ₂ Nanocomposite as a Direct Z-Scheme Photocatalyst for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 965-973.	6.7	519
54	Palladium/Graphitic Carbon Nitride (gâ€C ₃ N ₄) Stabilized Emulsion Microreactor as a Store for Hydrogen from Ammonia Borane for Use in Alkene Hydrogenation. Angewandte Chemie, 2018, 130, 15073-15077.	2.0	18

#	Article	IF	CITATIONS
55	1D/2D TiO ₂ /MoS ₂ Hybrid Nanostructures for Enhanced Photocatalytic CO ₂ Reduction. Advanced Optical Materials, 2018, 6, 1800911.	7.3	190
56	Palladium/Graphitic Carbon Nitride (g ₃ N ₄) Stabilized Emulsion Microreactor as a Store for Hydrogen from Ammonia Borane for Use in Alkene Hydrogenation. Angewandte Chemie - International Edition, 2018, 57, 14857-14861.	13.8	135
57	Surface Engineering of Carbon Nitride Electrode by Molecular Cobalt Species and Their Photoelectrochemical Application. Chemistry - an Asian Journal, 2018, 13, 1539-1543.	3.3	30
58	Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 19871-19880.	8.0	54
59	Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity. Science China Chemistry, 2018, 61, 344-350.	8.2	83
60	Covalent Functionalization of Carbon Nitride Frameworks through Cross oupling Reactions. Chemistry - A European Journal, 2018, 24, 14921-14927.	3.3	39
61	Direct Observation of Carbon Nitride-Stabilized Pickering Emulsions. Langmuir, 2018, 34, 10135-10143.	3.5	25
62	Two-Dimensional Nanosheets by Rapid and Efficient Microwave Exfoliation of Layered Materials. Chemistry of Materials, 2018, 30, 5932-5940.	6.7	76
63	A biomimetic <i>Setaria viridis</i> -inspired electrode with polyaniline nanowire arrays aligned on MoO ₃ @polypyrrole core–shell nanobelts. Journal of Materials Chemistry A, 2018, 6, 13428-13437.	10.3	43
64	Toward Efficient Carbon Nitride Photoelectrochemical Cells: Understanding Charge Transfer Processes. Advanced Materials Interfaces, 2017, 4, 1600265.	3.7	24
65	The Performance of Nanoparticulate Graphitic Carbon Nitride as an Amphiphile. Journal of the American Chemical Society, 2017, 139, 6026-6029.	13.7	130
66	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie, 2017, 129, 8546-8550.	2.0	16
67	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie - International Edition, 2017, 56, 8426-8430.	13.8	90
68	Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 2017, 205, 1-10.	20.2	102
69	Interlayer-Expanded Metal Sulfides on Graphene Triggered by a Molecularly Self-Promoting Process for Enhanced Lithium Ion Storage. ACS Applied Materials & Interfaces, 2017, 9, 40317-40323.	8.0	28
70	Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. Journal of Materials Chemistry A, 2017, 5, 19997-20004.	10.3	49
71	MoSe ₂ Nanosheet Array with Layered MoS ₂ Heterostructures for Superior Hydrogen Evolution and Lithium Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 44550-44559.	8.0	96
72	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. ACS Applied Materials & Interfaces, 2017, 9, 43966-43974.	8.0	26

#	Article	IF	CITATIONS
73	A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. Journal of Catalysis, 2017, 352, 532-541.	6.2	721
74	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie - International Edition, 2016, 55, 3672-3676.	13.8	233
75	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie, 2016, 128, 3736-3740.	2.0	31
76	Electrophoretic Deposition of Carbon Nitride Layers for Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2016, 8, 13058-13063.	8.0	74
77	Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices. Chemistry - an Asian Journal, 2016, 11, 2499-2512.	3.3	34
78	Synthesis of Organized Layered Carbon by Selfâ€īemplating of Dithiooxamide. Advanced Materials, 2016, 28, 6727-6733.	21.0	59
79	"Caffeine Doping―of Carbon/Nitrogenâ€Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes. ChemCatChem, 2015, 7, 2826-2830.	3.7	96
80	The Complex Role of Carbon Nitride as a Sensitizer in Photoelectrochemical Cells. Advanced Optical Materials, 2015, 3, 1052-1058.	7.3	41
81	Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry. Advanced Functional Materials, 2015, 25, 6265-6271.	14.9	89
82	Colorâ€īunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 913-917.	7.3	115
83	Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem, 2015, 8, 1350-1358.	6.8	178
84	Tuning the Morphology of g-C ₃ N ₄ for Improvement of Z-Scheme Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 15285-15293.	8.0	256
85	Enhanced Nearâ€Bandgap Response in InP Nanopillar Solar Cells. Advanced Energy Materials, 2014, 4, 1400061.	19.5	21
86	Liquid-Based Growth of Polymeric Carbon Nitride Layers and Their Use in a Mesostructured Polymer Solar Cell with <i>V</i> _{oc} Exceeding 1 V. Journal of the American Chemical Society, 2014, 136, 13486-13489.	13.7	227
87	Deterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor–Liquid–Solid Growth Mode. Chemistry of Materials, 2014, 26, 1340-1344.	6.7	32
88	Upconversion-Agent Induced Improvement of g-C ₃ N ₄ Photocatalyst under Visible Light. ACS Applied Materials & Interfaces, 2014, 6, 16481-16486.	8.0	104
89	Microwave-assisted solvothermal ionic liquid rapid synthesis of aluminum fluorohydroxide single-crystalline octahedra. Materials Letters, 2013, 94, 104-107.	2.6	3
90	Microwave-assisted rapid synthesis and photocatalytic activity of mesoporous Nd-doped SrTiO3 nanospheres and nanoplates. Materials Letters, 2013, 100, 62-65.	2.6	37

#	Article	IF	CITATIONS
91	Solvothermal synthesis, characterization and magnetic properties of α-Fe2O3 and Fe3O4 flower-like hollow microspheres. Journal of Solid State Chemistry, 2013, 199, 204-211.	2.9	22
92	Microwave-assisted ionic liquid solvothermal rapid synthesis of hollow microspheres of alkaline earth metal fluorides (MF2, M = Mg, Ca, Sr). CrystEngComm, 2012, 14, 2630.	2.6	40
93	α-Fe2O3 hierarchically nanostructured mesoporous microspheres: Surfactant-free solvothermal combined with heat treatment synthesis, photocatalytic activity and magnetic property. CrystEngComm, 2012, 14, 2702.	2.6	44
94	Monodisperse Fe ₃ O ₄ and γ-Fe ₂ O ₃ Magnetic Mesoporous Microspheres as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 4752-4757.	8.0	207
95	α-Fe2O3 hierarchically hollow microspheres self-assembled with nanosheets: surfactant-free solvothermal synthesis, magnetic and photocatalytic properties. CrystEngComm, 2011, 13, 5162.	2.6	61
96	Y4Al2O9 hierarchically nanostructured microspheres assembled with nanosheets: Microwave-solvothermal synthesis combined with thermal treatment and photocatalytic property. Materials Letters, 2011, 65, 2793-2796.	2.6	9