Laurence Pelletier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741655/publications.pdf

Version: 2024-02-01

66343 82547 10,084 75 42 72 citations h-index g-index papers 86 86 86 12939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase. Science, 2007, 318, 1637-1640.	12.6	800
2	The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage. Cell, 2009, 136, 420-434.	28.9	673
3	BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nature Methods, 2008, 5, 409-415.	19.0	568
4	Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins. Science, 2010, 328, 593-599.	12.6	465
5	A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell, 2015, 163, 1484-1499.	28.9	446
6	Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature, 2006, 441, 53-61.	27.8	419
7	An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature, 2004, 432, 1036-1040.	27.8	369
8	Centriole assembly in Caenorhabditis elegans. Nature, 2006, 444, 619-623.	27.8	358
9	Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nature Cell Biology, 2012, 14, 1148-1158.	10.3	337
10	Mitotic spindle assembly in animal cells: a fine balancing act. Nature Reviews Molecular Cell Biology, 2017, 18, 187-201.	37.0	315
11	Centriole Assembly Requires Both Centriolar and Pericentriolar Material Proteins. Developmental Cell, 2004, 7, 815-829.	7.0	273
12	Genome-scale RNAi profiling of cell division in human tissue culture cells. Nature Cell Biology, 2007, 9, 1401-1412.	10.3	270
13	A proximity-dependent biotinylation map of a human cell. Nature, 2021, 595, 120-124.	27.8	263
14	A Strategy for Modulation of Enzymes in the Ubiquitin System. Science, 2013, 339, 590-595.	12.6	257
15	Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. Journal of Cell Biology, 2005, 170, 1047-1055.	5. 2	248
16	HAUS, the 8-Subunit Human Augmin Complex, Regulates Centrosome and Spindle Integrity. Current Biology, 2009, 19, 816-826.	3.9	231
17	The Caenorhabditis elegans Centrosomal Protein SPD-2 Is Required for both Pericentriolar Material Recruitment and Centriole Duplication. Current Biology, 2004, 14, 863-873.	3.9	225
18	The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. Journal of Cell Biology, 2003, 163, 351-362.	5.2	188

#	Article	IF	Citations
19	Golgi biogenesis in Toxoplasma gondii. Nature, 2002, 418, 548-552.	27.8	184
20	Golgin Tethers Define Subpopulations of COPI Vesicles. Science, 2005, 307, 1095-1098.	12.6	178
21	The Mammalian SPD-2 Ortholog Cep192 RegulatesÂCentrosome Biogenesis. Current Biology, 2008, 18, 136-141.	3.9	169
22	ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nature Methods, 2017, 14, 645-646.	19.0	160
23	CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation. Current Biology, 2013, 23, 1360-1366.	3.9	153
24	The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Molecules and Cells, 2017, 40, 243-253.	2.6	145
25	Structure-Function Analysis of Core STRIPAK Proteins. Journal of Biological Chemistry, 2011, 286, 25065-25075.	3.4	136
26	Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains. Molecular Cell, 2019, 73, 621-638.e17.	9.7	135
27	Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends in Cell Biology, 2014, 24, 188-197.	7.9	134
28	Transferrin receptor recycling in the absence of perinuclear recycling endosomes. Journal of Cell Biology, 2002, 156, 797-804.	5. 2	129
29	Global Interactomics Uncovers Extensive Organellar Targeting by Zika Virus. Molecular and Cellular Proteomics, 2018, 17, 2242-2255.	3.8	112
30	Pooledâ€matrix protein interaction screens using Barcode Fusion Genetics. Molecular Systems Biology, 2016, 12, 863.	7.2	102
31	DCDC2 Mutations Cause a Renal-Hepatic Ciliopathy by Disrupting Wnt Signaling. American Journal of Human Genetics, 2015, 96, 81-92.	6.2	98
32	A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Molecular Systems Biology, 2013, 9, 696.	7.2	90
33	RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2396-2401.	7.1	88
34	Saturation variant interpretation using CRISPR prime editing. Nature Biotechnology, 2022, 40, 885-895.	17.5	86
35	DNA damage signalling targets the kinetochore to promote chromatin mobility. Nature Cell Biology, 2016, 18, 281-290.	10.3	82
36	Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators. Cell Reports, 2016, 17, 2488-2501.	6.4	81

#	Article	IF	Citations
37	Spatial and proteomic profiling reveals centrosomeâ€independent features of centriolar satellites. EMBO Journal, 2019, 38, e101109.	7.8	73
38	Centriolar satellite biogenesis and function in vertebrate cells. Journal of Cell Science, 2020, 133, .	2.0	73
39	Centrosome asymmetry and inheritance during animal development. Current Opinion in Cell Biology, 2012, 24, 541-546.	5.4	68
40	The effect of Golgi depletion on exocytic transport. Nature Cell Biology, 2000, 2, 840-846.	10.3	66
41	Interaction Proteomics Identify NEURL4 and the HECT E3 Ligase HERC2 as Novel Modulators of Centrosome Architecture. Molecular and Cellular Proteomics, 2012, 11, M111.014233.	3.8	57
42	PTEN regulates cilia through Dishevelled. Nature Communications, 2015, 6, 8388.	12.8	55
43	CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function. Cell Reports, 2018, 22, 885-894.	6.4	48
44	CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme. Open Biology, 2017, 7, 170114.	3.6	46
45	Salmonella exploits Arl8B-directed kinesin activity to promote endosome tubulation and cell-to-cell transfer. Cellular Microbiology, 2011, 13, 1812-1823.	2.1	43
46	Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. Journal of Cell Biology, 2015, 209, 339-348.	5.2	40
47	Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly. Journal of Cell Science, 2012, 125, 3745-51.	2.0	36
48	Gravin Is a Transitory Effector of Polo-like Kinase 1 during Cell Division. Molecular Cell, 2012, 48, 547-559.	9.7	36
49	Cep192 Controls the Balance of Centrosome and Non-Centrosomal Microtubules during Interphase. PLoS ONE, 2014, 9, e101001.	2.5	36
50	The Deubiquitinase USP37 Regulates Chromosome Cohesion and Mitotic Progression. Current Biology, 2015, 25, 2290-2299.	3.9	34
51	A multiplexed, next generation sequencing platform for high-throughput detection of SARS-CoV-2. Nature Communications, 2021, 12, 1405.	12.8	33
52	Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nature Communications, 2018, 9, 1731.	12.8	32
53	CEP192 interacts physically and functionally with the K63-deubiquitinase CYLD to promote mitotic spindle assembly. Cell Cycle, 2012, 11, 3555-3558.	2.6	28
54	LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation. Journal of Cell Biology, 2020, 219, .	5.2	25

#	Article	IF	CITATIONS
55	Formin-mediated actin polymerization promotes <i>Salmonella</i> invasion. Cellular Microbiology, 2013, 15, 2051-2063.	2.1	22
56	Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nature Communications, 2019, 10, 2356.	12.8	22
57	Comparison of SARS-CoV-2 indirect and direct RT-qPCR detection methods. Virology Journal, 2021, 18, 99.	3.4	22
58	N-Cadherin Relocalizes from the Periphery to the Center of the Synapse after Transient Synaptic Stimulation in Hippocampal Neurons. PLoS ONE, 2013, 8, e79679.	2.5	21
59	Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nature Cell Biology, 2022, 24, 483-496.	10.3	18
60	Myotubularin-related Proteins 3 and 4 Interact with Polo-like Kinase 1 and Centrosomal Protein of 55 kDa to Ensure Proper Abscission. Molecular and Cellular Proteomics, 2015, 14, 946-960.	3.8	17
61	Systems biology of mammalian cell division. Cell Cycle, 2008, 7, 2123-2128.	2.6	13
62	Centrosome Biology: Polymer-Based CentrosomeÂMaturation. Current Biology, 2017, 27, R836-R839.	3.9	12
63	The NEMP family supports metazoan fertility and nuclear envelope stiffness. Science Advances, 2020, 6, eabb4591.	10.3	11
64	CDKL kinase regulates the length of the ciliary proximal segment. Current Biology, 2021, 31, 2359-2373.e7.	3.9	11
65	Centrioles: Duplicating Precariously. Current Biology, 2007, 17, R770-R773.	3.9	10
66	Direct interaction between CEP85 and STIL mediates PLk4-driven directed cell migration. Journal of Cell Science, 2020, 133, .	2.0	9
67	Charting the complex composite nature of centrosomes, primary cilia and centriolar satellites. Current Opinion in Structural Biology, 2021, 66, 32-40.	5 . 7	9
68	Centrosome Biology: The Ins and Outs of Centrosome Assembly. Current Biology, 2015, 25, R656-R659.	3.9	8
69	Pericentrin: Critical for Spindle Orientation. Current Biology, 2014, 24, R962-R964.	3.9	6
70	53BP1 Goes Back to Its p53 Roots. Molecular Cell, 2016, 64, 3-4.	9.7	5
71	Centrosomes: Keeping Tumors in Check. Current Biology, 2008, 18, R702-R704.	3.9	3
72	Global cellular response to chemical perturbation of PLK4 activity and abnormal centrosome number. ELife, 0, 11 , .	6.0	2

LAURENCE PELLETIER

#	Article	IF	CITATIONS
73	A magic bullet for targeting cancers with supernumerary centrosomes. EMBO Journal, 2019, 38, .	7.8	1
74	The C. elegans Centrosome during Early Embryonic Development. , 2005, , 225-250.		0
75	Centrosome Biogenesis: Centrosomin Sizes Things Up!. Current Biology, 2010, 20, R1069-R1071.	3.9	O