Nina Wedell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sperm competition, male prudence and sperm-limited females. Trends in Ecology and Evolution, 2002, 17, 313-320.	8.7	1,029
2	Genetic compatibility, mate choice and patterns of parentage: Invited Review. Molecular Ecology, 2000, 9, 1013-1027.	3.9	810
3	Polyandrous females avoid costs of inbreeding. Nature, 2002, 415, 71-73.	27.8	456
4	The Ecology and Evolutionary Dynamics of Meiotic Drive. Trends in Ecology and Evolution, 2016, 31, 315-326.	8.7	305
5	Polyandry in nature: a global analysis. Trends in Ecology and Evolution, 2014, 29, 376-383.	8.7	198
6	Non-fertile sperm delay female remating. Nature, 1999, 397, 486-486.	27.8	187
7	Definitive evidence for cuticular pheromones in a cricket. Animal Behaviour, 1997, 54, 979-984.	1.9	186
8	Evolution of Male-Killer Suppression in a Natural Population. PLoS Biology, 2006, 4, e283.	5.6	181
9	Butterflies tailor their ejaculate in response to sperm competition risk and intensity. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1033-1039.	2.6	176
10	BENEFITS OF MULTIPLE MATES IN THE CRICKET <i>GRYLLUS BIMACULATUS</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 1726-1730.	2.3	171
11	Benefits of Multiple Mates in the Cricket Gryllus bimaculatus. Evolution; International Journal of Organic Evolution, 1998, 52, 1726.	2.3	134
12	Female receptivity in butterflies and moths. Journal of Experimental Biology, 2005, 208, 3433-3440.	1.7	134
13	Extraordinary Flux in Sex Ratio. Science, 2007, 317, 214-214.	12.6	130
14	The wartbiter spermatophore and its effect on female reproductive output (Orthoptera: Tettigoniidae,) Tj ETQqC	00rgBT/ 1.4	Overlock 10
15	Superior sperm competitors sire higher–quality young. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1933-1938.	2.6	117
16	Monogamy and the Battle of the Sexes. Annual Review of Entomology, 2009, 54, 361-378.	11.8	117
17	EVIDENCE FOR STRONG INTRALOCUS SEXUAL CONFLICT IN THE INDIAN MEAL MOTH, PLODIA INTERPUNCTELLA. Evolution; International Journal of Organic Evolution, 2011, 65, 2085-2097.	2.3	114

18 Sexual conflict and life histories. Animal Behaviour, 2006, 71, 999-1011.

1.9 112

#	Article	IF	CITATIONS
19	The polyandry revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120041.	4.0	107
20	Selfish Genetic Elements Promote Polyandry in a Fly. Science, 2008, 322, 1241-1243.	12.6	105
21	Mate Quality Affects Reproductive Effort in a Paternally Investing Species. American Naturalist, 1996, 148, 1075-1088.	2.1	104
22	Male age, mating status and nuptial gift quality in a bushcricket. Animal Behaviour, 2004, 67, 1059-1065.	1.9	103
23	Attractive males have greater success in sperm competition. Current Biology, 2008, 18, R553-R554.	3.9	103
24	Protandry and mate assessment in the wartbiter Decticus verrucivorus (Orthoptera : Tettigoniidae). Behavioral Ecology and Sociobiology, 1992, 31, 301.	1.4	100
25	Introduction. Sexual conflict: a new paradigm?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 229-234.	4.0	94
26	Male-Killing Bacteria Trigger a Cycle of Increasing Male Fatigue and Female Promiscuity. Current Biology, 2007, 17, 273-277.	3.9	94
27	Increased male mating rate in Drosophila is associated with Wolbachia infection. Journal of Evolutionary Biology, 2006, 19, 1964-1972.	1.7	89
28	<i>Wolbachia</i> infection reduces sperm competitive ability in an insect. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1455-1458.	2.6	88
29	Monandry and polyandry as alternative lifestyles in a butterfly. Behavioral Ecology, 2002, 13, 450-455.	2.2	87
30	SUCCESSFUL FATHERS SIRE SUCCESSFUL SONS. Evolution; International Journal of Organic Evolution, 1999, 53, 620-625.	2.3	86
31	Host plant utilization in the comma butterfly: sources of variation and evolutionary implications. Oecologia, 1994, 99, 132-140.	2.0	81
32	Postcopulatory inbreeding avoidance by female crickets only revealed by molecular markers. Molecular Ecology, 2006, 15, 3817-3824.	3.9	80
33	Female preference for male courtship song and its role as a signal of immune function and condition. Animal Behaviour, 2006, 72, 809-818.	1.9	80
34	The heritability of attractiveness. Current Biology, 2007, 17, R959-R960.	3.9	80
35	SPERMATOPHORE SIZE IN BUSHCRICKETS: COMPARATIVE EVIDENCE FOR NUPTIAL GIFTS AS A SPERM PROTECTION DEVICE. Evolution; International Journal of Organic Evolution, 1993, 47, 1203-1212.	2.3	73
36	Multiple mating increases female fitness in Drosophila simulans. Animal Behaviour, 2008, 76, 963-970.	1.9	68

#	Article	IF	CITATIONS
37	Determinants of paternity in a butterfly. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 625-630.	2.6	65
38	Decoupling of reproductive rates and parental expenditure in a polyandrous butterfly. Behavioral Ecology, 1998, 9, 20-25.	2.2	64
39	Age-based female preference in the fruit fly Drosophila pseudoobscura. Animal Behaviour, 2008, 75, 1413-1421.	1.9	64
40	Polyandry Prevents Extinction. Current Biology, 2010, 20, 471-475.	3.9	64
41	Incomplete Sex Chromosome Dosage Compensation in the Indian Meal Moth, Plodia interpunctella, Based on De Novo Transcriptome Assembly. Genome Biology and Evolution, 2012, 4, 1118-1126.	2.5	64
42	SEX RATIO DISTORTER REDUCES SPERM COMPETITIVE ABILITY IN AN INSECT. Evolution; International Journal of Organic Evolution, 2008, 62, 1644-1652.	2.3	63
43	Strategic sperm allocation in the Small White butterfly Pieris rapae (Lepidoptera: Pieridae). Functional Ecology, 1999, 13, 85-93.	3.6	61
44	Paternal investment directly affects female reproductive effort in an insect. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2065-2071.	2.6	61
45	SPERM COMPETITION SELECTS FOR NUPTIAL FEEDING IN A BUSHCRICKET. Evolution; International Journal of Organic Evolution, 1991, 45, 1975-1978.	2.3	60
46	Variation in nuptial gift quality in bush crickets (Orthoptera: Tettigoniidae). Behavioral Ecology, 1994, 5, 418-425.	2.2	60
47	Mating effort or paternal investment? Incorporation rate and cost of male donations in the wartbiter. Behavioral Ecology and Sociobiology, 1993, 32, 239.	1.4	58
48	Sexual and Natural Selection Both Influence Male Genital Evolution. PLoS ONE, 2013, 8, e63807.	2.5	58
49	Selfish genetic elements and sexual selection: their impact on male fertility. Genetica, 2008, 134, 99-111.	1.1	55
50	The dynamic relationship between polyandry and selfish genetic elements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120049.	4.0	55
51	Selfish genetic elements and sexual selection: their impact on male fertility. Genetica, 2008, 132, 295-307.	1.1	51
52	Genotypeâ€byâ€environment interactions for female preference. Journal of Evolutionary Biology, 2010, 23, 2550-2557.	1.7	51
53	Female remating in butterflies: interaction between female genotype and nonfertile sperm. Journal of Evolutionary Biology, 2008, 14, 746-754.	1.7	50
54	Conflict on the Sex Chromosomes: Cause, Effect, and Complexity. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017715-a017715.	5.5	49

#	Article	IF	CITATIONS
55	Sperm protection and mate assessment in the bushcricketCoptaspissp. 2. Animal Behaviour, 1998, 56, 357-363.	1.9	46
56	Sexual selection and female fitness in Drosophila simulans. Behavioral Ecology and Sociobiology, 2008, 62, 721-728.	1.4	44
57	Does polyandry control population sex ratio via regulation of a selfish gene?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133259.	2.6	42
58	Oviposition plant preference and offspring performance in the comma butterfly: correlations and conflicts. Entomologia Experimentalis Et Applicata, 1996, 80, 141-144.	1.4	39
59	Mate preferences in Drosophila infected with Wolbachia?. Behavioral Ecology and Sociobiology, 2007, 61, 1229-1235.	1.4	39
60	Ejaculate size in bushcrickets: the importance of being large. Journal of Evolutionary Biology, 1997, 10, 315.	1.7	39
61	Effect of Adult Feeding on Male Mating Behaviour in the Butterfly, Bicyclus anynana (Lepidoptera:) Tj ETQq1	1 0.784314 r 0.7	gBT /Overloc
62	Sperm Competition Selects for Nuptial Feeding in a Bushcricket. Evolution; International Journal of Organic Evolution, 1991, 45, 1975.	2.3	37
63	Ejaculate size in bushcrickets: the importance of being large. Journal of Evolutionary Biology, 1997, 10, 315-325.	1.7	37
64	Variation in the cost to females of the sexual conflict over mating in the seed bug, Lygaeus equestris. Animal Behaviour, 2006, 72, 313-321.	1.9	37
65	Strategic sperm allocation under parasitic sex-ratio distortion. Biology Letters, 2006, 2, 78-80.	2.3	35
66	Level of sperm competition promotes evolution of male ejaculate allocation patterns in a moth. Animal Behaviour, 2010, 80, 37-43.	1.9	35
67	DDT resistance, epistasis and male fitness in flies. Journal of Evolutionary Biology, 2011, 24, 1351-1362.	1.7	35
68	The impact of <i><scp>W</scp>olbachia</i> , male age and mating history on cytoplasmic incompatibility and sperm transfer in <i><scp>D</scp>rosophila simulans</i> . Journal of Evolutionary Biology, 2014, 27, 1-10.	1.7	35
69	Does mating negatively affect female immune defences in insects?. Animal Biology, 2019, 69, 117-136.	1.0	35
70	Competing Selfish Genetic Elements in the Butterfly Hypolimnas bolina. Current Biology, 2006, 16, 2453-2458.	3.9	34
71	Rapidly Shifting Sex Ratio across a Species Range. Current Biology, 2009, 19, 1628-1631.	3.9	34
72	Experimental evolution reveals trade-offs between mating and immunity. Biology Letters, 2013, 9, 20130262.	2.3	33

#	Article	IF	CITATIONS
73	Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution; International Journal of Organic Evolution, 2015, 69, 709-720.	2.3	33
74	Sexual conflict maintains variation at an insecticide resistance locus. BMC Biology, 2015, 13, 34.	3.8	33
75	Transposable Elements and Insecticide Resistance. Advances in Genetics, 2012, 78, 169-201.	1.8	31
76	Polyandry and sex-specific gene expression. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120047.	4.0	31
77	Gene drive: progress and prospects. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192709.	2.6	31
78	<i>Wolbachia</i> infection lowers fertile sperm transfer in a moth. Biology Letters, 2011, 7, 187-189.	2.3	30
79	DO WOLBACHIA-ASSOCIATED INCOMPATIBILITIES PROMOTE POLYANDRY?. Evolution; International Journal of Organic Evolution, 2008, 62, 107-122.	2.3	28
80	Variation in male courtship costs in butterflies. Behavioral Ecology and Sociobiology, 2010, 64, 1385-1391.	1.4	28
81	Flexible polyandry in female flies is an adaptive response to infertile males. Behavioral Ecology, 2019, 30, 1715-1724.	2.2	28
82	The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly Hypolimnas bolina. PLoS Genetics, 2014, 10, e1004822.	3.5	27
83	Sexual selection drives the evolution of male wing interference patterns. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182850.	2.6	27
84	Oviposition tests of ant preference in a myrmecophilous butterfly. Journal of Evolutionary Biology, 2002, 15, 861-870.	1.7	26
85	Variation in sex peptide expression inD. melanogaster. Genetical Research, 2009, 91, 237-242.	0.9	26
86	Remating in the laboratory reflects rates of polyandry in the wild. Animal Behaviour, 2011, 82, 1381-1386.	1.9	24
87	Can cytoplasmic incompatibility inducing Wolbachia promote the evolution of mate preferences?. Journal of Evolutionary Biology, 2005, 18, 967-977.	1.7	23
88	The impact of anaesthetic technique on survival and fertility in <i>Drosophila</i> . Physiological Entomology, 2008, 33, 310-315.	1.5	23
89	Coevolution of non-fertile sperm and female receptivity in a butterfly. Biology Letters, 2009, 5, 678-681.	2.3	23
90	Male moths reduce sperm investment in relatives. Animal Behaviour, 2009, 77, 1547-1550.	1.9	23

#	Article	IF	CITATIONS
91	No evidence of mate discrimination against males carrying a sex ratio distorter in Drosophila pseudoobscura. Behavioral Ecology and Sociobiology, 2012, 66, 561-568.	1.4	23
92	Interactions between the sexes: new perspectives on sexual selection and reproductive isolation. Evolutionary Ecology, 2009, 23, 71-91.	1.2	21
93	Pleiotropic Effects of DDT Resistance on Male Size and Behaviour. Behavior Genetics, 2017, 47, 449-458.	2.1	21
94	Fifty years of sperm competition: the structure of a scientific revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200060.	4.0	21
95	Natural selection bias?. Nature, 1997, 386, 234-234.	27.8	20
96	Sexual conflict and speciation. Nature, 2000, 407, 149-150.	27.8	19
97	Nuptial gifts fail to resolve a sexual conflict in an insect. BMC Evolutionary Biology, 2008, 8, 204.	3.2	19
98	Phenotypic and genetic variation in male genitalia in the seedbug, Lygaeus equestris (Heteroptera). Biological Journal of the Linnean Society, 2009, 98, 400-405.	1.6	19
99	Attractive males do not sire superior daughters. Evolutionary Ecology, 2010, 24, 195-205.	1.2	19
100	The interplay between different stages of reproduction in males of the moth Plodia interpunctella. Animal Behaviour, 2013, 86, 917-922.	1.9	19
101	Female preference for large males in the bushcricketRequena sp. 5 (Orthoptera: Tettigoniidae). Journal of Insect Behavior, 1995, 8, 513-522.	0.7	18
102	An X-linked meiotic drive allele has strong, recessive fitness costs in female <i>Drosophila pseudoobscura</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192038.	2.6	17
103	The consequences of genetic variation in sex peptide expression levels for egg laying and retention in females. Heredity, 2012, 109, 222-225.	2.6	16
104	Experimental evolution under hyper-promiscuity in Drosophila melanogaster. BMC Evolutionary Biology, 2016, 16, 131.	3.2	16
105	Ancient gene drives: an evolutionary paradox. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192267.	2.6	16
106	Sperm competition, immunity, selfish genes and cancer. Cellular and Molecular Life Sciences, 2008, 65, 3241-3254.	5.4	15
107	SEX RATIO DRIVE PROMOTES SEXUAL CONFLICT AND SEXUAL COEVOLUTION IN THE FLY <i>DROSOPHILA PSEUDOOBSCURA</i> . Evolution; International Journal of Organic Evolution, 2009, 64, 1504-9.	2.3	15
108	Intralocus sexual conflict and insecticide resistance. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161429.	2.6	15

#	Article	IF	CITATIONS
109	MALE GENOTYPE AFFECTS FEMALE FITNESS IN A PATERNALLY INVESTING SPECIES. Evolution; International Journal of Organic Evolution, 2006, 60, 1638-1645.	2.3	14
110	No evidence that temperature-related fertility differences influence the distribution of a selfish genetic element. Functional Ecology, 2012, 26, 657-665.	3.6	14
111	Penis evolution across species: divergence and diversity. Nature Reviews Urology, 2019, 16, 98-106.	3.8	14
112	Inbreeding alters intersexual fitness correlations in Drosophila simulans Ecology and Evolution, 2014, 4, 3330-3338.	1.9	12
113	The impact of predation risk and of parasitic infection on parental care in brooding crustaceans. Animal Behaviour, 2014, 96, 97-105.	1.9	12
114	Evolutionary Conflict: Sperm Wars, Phantom Inseminations. Current Biology, 2005, 15, R801-R803.	3.9	11
115	Opposite environmental and genetic influences on body size in North American Drosophila pseudoobscura. BMC Evolutionary Biology, 2015, 15, 51.	3.2	11
116	Experimental evolution reveals divergence in female genital teeth morphology in response to sexual conflict intensity in a moth. Journal of Evolutionary Biology, 2019, 32, 519-524.	1.7	11
117	Winter is coming: hibernation reverses the outcome of sperm competition in a fly. Journal of Evolutionary Biology, 2016, 29, 371-379.	1.7	10
118	Selfish genetic elements and male fertility. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200067.	4.0	10
119	No selection for change in polyandry under experimental evolution. Journal of Evolutionary Biology, 2019, 32, 717-730.	1.7	9
120	Variation in male fertility in a polymorphic moth, Parasemia plantaginis. Animal Behaviour, 2016, 111, 33-40.	1.9	8
121	Temperature can shape a cline in polyandry, but only genetic variation can sustain it over time. Behavioral Ecology, 2016, 27, 462-469.	2.2	8
122	Can patterns of chromosome inversions in <i>Drosophila pseudoobscura</i> predict polyandry across a geographical cline?. Ecology and Evolution, 2014, 4, 3072-3081.	1.9	7
123	<i>Wolbachia</i> infection can bias estimates of intralocus sexual conflict. Ecology and Evolution, 2019, 9, 328-338.	1.9	7
124	Selfish genes and sexual selection: the impact of genomic parasites on host reproduction. Journal of Zoology, 2020, 311, 1-12.	1.7	7
125	The impact of female mating strategies on the success of insect control technologies. Current Opinion in Insect Science, 2021, 45, 75-83.	4.4	7
126	Speed or sperm: A potential trade-off between development and reproduction in the butterfly, Bicyclus anynana (Lepidoptera: Nymphalidae). European Journal of Entomology, 2010, 107, 55-59.	1.2	7

#	Article	IF	CITATIONS
127	Correlated responses to selection on female egg size in male reproductive traits in a butterfly. Evolutionary Ecology, 2009, 23, 389-402.	1.2	6
128	Sperm dumping as a defense against meiotic drive. Journal of Biology, 2009, 8, 6.	2.7	5
129	Perceived risk of sperm competition affects sperm investment in a mate-guarding amphipod. Animal Behaviour, 2014, 87, 231-238.	1.9	5
130	Animal personalities: an empty placeholder feigning understanding: a comment on Beekman and Jordan. Behavioral Ecology, 2017, 28, 629-630.	2.2	5
131	EB Ford revisited: assessing the long-term stability of wing-spot patterns and population genetic structure of the meadow brown butterfly on the Isles of Scilly. Heredity, 2017, 118, 322-329.	2.6	5
132	Podocotyle atomon (Trematoda: Digenea) impacts reproductive behaviour, survival and physiology in Gammarus zaddachi (Amphipoda). Diseases of Aquatic Organisms, 2019, 136, 51-62.	1.0	5
133	Male genotype affects female fitness in a paternally investing species. Evolution; International Journal of Organic Evolution, 2006, 60, 1638-45.	2.3	4
134	Sexual selection on the genital lobes of male <i>Drosophila simulans</i> . Evolution; International Journal of Organic Evolution, 2021, 75, 501-514.	2.3	3
135	Selfish Genetic Elements and Sexual Selection. History, Philosophy and Theory of the Life Sciences, 2015, , 165-190.	0.4	3
136	Fluctuating asymmetry, parasitism and reproductive fitness in two species of gammarid crustacean. Diseases of Aquatic Organisms, 2019, 136, 37-49.	1.0	3
137	Three billion years of research and development. Nature Ecology and Evolution, 2017, 1, 35.	7.8	2
138	Sexual selection: Large sex combs signal male triumph in sperm competition. Current Biology, 2021, 31, R478-R481.	3.9	2
139	Measuring the sperm competition successes of field males of the yellow dung fly. Ecological Entomology, 2002, 27, 763-765.	2.2	1
140	Obituary in memoriam of Professor Matthew J.G. Gage. Animal Behaviour, 2022, 185, iii-iv.	1.9	1
141	ECOLOGY AND EVOLUTION: Learning from Lepidoptera. Science, 2004, 303, 174-174.	12.6	0
142	Everything you always wanted to know about sperm (but were afraid to ask). Trends in Ecology and Evolution, 2009, 24, 648-648.	8.7	0
143	Sperm Competition. , 2019, , 498-504.		0
144	Sperm competition and ejaculate evolution. Society of Reproduction and Fertility Supplement, 2007, 65, 115-35.	0.2	0