
Mustafa O Guler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7740137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intermolecular Forces in the Self-Assembly of Peptide Amphiphile Nanofibers. Advanced Functional Materials, 2006, 16, 499-508.	14.9	274
2	Self-Assembled Peptide Amphiphile Nanofibers Conjugated to MRI Contrast Agents. Nano Letters, 2005, 5, 1-4.	9.1	243
3	A Self-Assembled Nanofiber Catalyst for Ester Hydrolysis. Journal of the American Chemical Society, 2007, 129, 12082-12083.	13.7	239
4	Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials, 2008, 29, 161-171.	11.4	216
5	Supramolecular crafting of cell adhesion. Biomaterials, 2007, 28, 4608-4618.	11.4	213
6	Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films. ACS Applied Materials & Interfaces, 2011, 3, 539-545.	8.0	191
7	Presentation of RGDS Epitopes on Self-Assembled Nanofibers of Branched Peptide Amphiphiles. Biomacromolecules, 2006, 7, 1855-1863.	5.4	187
8	Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 2006, 78A, 157-167.	4.0	148
9	Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials, 2011, 32, 8797-8805.	11.4	146
10	Facile Synthesis of Threeâ€Dimensional Ptâ€TiO ₂ Nanoâ€networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane. Angewandte Chemie - International Edition, 2016, 55, 12257-12261.	13.8	141
11	Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles. Langmuir, 2005, 21, 4705-4709.	3.5	139
12	Heparin Mimetic Peptide Nanofibers Promote Angiogenesis. Biomacromolecules, 2011, 12, 3508-3519.	5.4	127
13	The internal structure of self-assembled peptide amphiphiles nanofibers. Soft Matter, 2007, 3, 454.	2.7	123
14	Mussel Inspired Dynamic Crossâ€Linking of Selfâ€Healing Peptide Nanofiber Network. Advanced Functional Materials, 2013, 23, 2081-2090.	14.9	123
15	Presentation and Recognition of Biotin on Nanofibers Formed by Branched Peptide Amphiphiles. Nano Letters, 2005, 5, 249-252.	9.1	122
16	Selfâ€Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Advanced Healthcare Materials, 2015, 4, 2557-2586.	7.6	114
17	Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers. Journal of Materials Chemistry, 2005, 15, 4507.	6.7	108
18	Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2433-2454.	3.3	104

#	Article	IF	CITATIONS
19	The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system. Wear, 2010, 270, 73-82.	3.1	103
20	Growth Factor Binding on Heparin Mimetic Peptide Nanofibers. Biomacromolecules, 2012, 13, 3311-3319.	5.4	95
21	A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO2Nanowires for Superior Photocatalytic Performance. Scientific Reports, 2016, 6, 30587.	3.3	95
22	Magnetic Resonance Imaging of Self-Assembled Biomaterial Scaffolds. Bioconjugate Chemistry, 2005, 16, 1343-1348.	3.6	92
23	Bioactive Supramolecular Peptide Nanofibers for Regenerative Medicine. Advanced Healthcare Materials, 2014, 3, 1357-1376.	7.6	90
24	Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury. Biomaterials, 2017, 134, 117-127.	11.4	89
25	A hybrid nanofiber matrix to control the survival and maturation of brain neurons. Biomaterials, 2012, 33, 545-555.	11.4	86
26	Self-assembled peptide nanostructures for functional materials. Nanotechnology, 2016, 27, 402002.	2.6	76
27	Self-assembled one-dimensional soft nanostructures. Soft Matter, 2010, 6, 5839.	2.7	75
28	Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress. Scientific Reports, 2017, 7, 40493.	3.3	75
29	Supramolecular GAG-like Self-Assembled Glycopeptide Nanofibers Induce Chondrogenesis and Cartilage Regeneration. Biomacromolecules, 2016, 17, 679-689.	5.4	73
30	Cooperative effect of heparan sulfate and laminin mimetic peptide nanofibers on the promotion of neurite outgrowth. Acta Biomaterialia, 2012, 8, 2077-2086.	8.3	69
31	Self-Assembled Peptide Amphiphile Nanofibers and PEG Composite Hydrogels as Tunable ECM Mimetic Microenvironment. Biomacromolecules, 2015, 16, 1247-1258.	5.4	69
32	Slow Release and Delivery of Antisense Oligonucleotide Drug by Self-Assembled Peptide Amphiphile Nanofibers. Biomacromolecules, 2011, 12, 3007-3014.	5.4	67
33	Self-Assembled Template-Directed Synthesis of One-Dimensional Silica and Titania Nanostructures. Langmuir, 2011, 27, 1079-1084.	3.5	63
34	Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomaterialia, 2014, 10, 1156-1166.	8.3	62
35	Self-assembled peptidic nanostructures. Nano Today, 2009, 4, 458-469.	11.9	61
36	Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles. Journal of Colloid and Interface Science, 2011, 356, 131-137.	9.4	59

#	Article	IF	CITATIONS
37	Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation. Biomacromolecules, 2015, 16, 2198-2208.	5.4	59
38	Label-Free Nanometer-Resolution Imaging of Biological Architectures through Surface Enhanced Raman Scattering. Scientific Reports, 2013, 3, 2624.	3.3	57
39	Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomaterials Science, 2017, 5, 67-76.	5.4	57
40	Fabrication of Supramolecular n/p-Nanowires <i>via</i> Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media. ACS Nano, 2017, 11, 6881-6892.	14.6	56
41	Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Selfâ€Assembling Peptide Amphiphiles. Advanced Functional Materials, 2017, 27, 1605122.	14.9	53
42	Enhanced Oligonucleotide Binding to Self-Assembled Nanofibers. Bioconjugate Chemistry, 2005, 16, 501-503.	3.6	51
43	Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells. Acta Biomaterialia, 2013, 9, 9075-9085.	8.3	48
44	Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. Journal of Materials Chemistry B, 2016, 4, 4605-4611.	5.8	47
45	Amyloid Inspired Self-Assembled Peptide Nanofibers. Biomacromolecules, 2012, 13, 3377-3387.	5.4	46
46	Self-Assembled Peptide Nanofiber Templated One-Dimensional Gold Nanostructures Exhibiting Resistive Switching. Langmuir, 2012, 28, 16347-16354.	3.5	46
47	A supramolecular peptide nanofiber templated Pd nanocatalyst for efficient Suzuki coupling reactions under aqueous conditions. Chemical Communications, 2012, 48, 11358.	4.1	44
48	Bone-Like Mineral Nucleating Peptide Nanofibers Induce Differentiation of Human Mesenchymal Stem Cells into Mature Osteoblasts. Biomacromolecules, 2014, 15, 2407-2418.	5.4	44
49	Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking. Organic and Biomolecular Chemistry, 2015, 13, 1983-1987.	2.8	44
50	Design of a Gdâ€ <scp>DOTA</scp> â€Phthalocyanine Conjugate Combining <scp>MRI</scp> Contrast Imaging and Photosensitization Properties as a Potential Molecular Theranostic. Photochemistry and Photobiology, 2014, 90, 1376-1386.	2.5	43
51	Interfiber interactions alter the stiffness of gels formed by supramolecular self-assembled nanofibers. Soft Matter, 2011, 7, 3524.	2.7	42
52	Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents. Journal of Materials Chemistry, 2011, 21, 15157.	6.7	42
53	Surface-adhesive and osteogenic self-assembled peptide nanofibers for bioinspired functionalization of titanium surfaces. Soft Matter, 2012, 8, 3929.	2.7	42
54	Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction. Acta Biomaterialia, 2017, 58, 102-112.	8.3	42

#	Article	IF	CITATIONS
55	Microscopic characterization of peptide nanostructures. Micron, 2012, 43, 69-84.	2.2	41
56	Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation. ACS Applied Materials & Interfaces, 2018, 10, 308-317.	8.0	41
57	Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers. Biomaterials, 2016, 107, 124-132.	11.4	40
58	Virus-like nanostructures for tuning immune response. Scientific Reports, 2015, 5, 16728.	3.3	39
59	Chondrogenic Differentiation of Mesenchymal Stem Cells on Glycosaminoglycan-Mimetic Peptide Nanofibers. ACS Biomaterials Science and Engineering, 2016, 2, 871-878.	5.2	38
60	Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth. Journal of Materials Chemistry B, 2017, 5, 517-524.	5.8	38
61	Size-controlled conformal nanofabrication of biotemplated three-dimensional TiO2 and ZnO nanonetworks. Scientific Reports, 2013, 3, 2306.	3.3	37
62	Template-Directed Synthesis of Silica Nanotubes for Explosive Detection. ACS Applied Materials & Interfaces, 2011, 3, 4159-4164.	8.0	36
63	Effects of temperature, pH and counterions on the stability of peptide amphiphile nanofiber structures. RSC Advances, 2016, 6, 104201-104214.	3.6	36
64	Supramolecular chirality in self-assembled peptide amphiphile nanostructures. Chemical Communications, 2015, 51, 12470-12473.	4.1	35
65	Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels. Acta Biomaterialia, 2015, 22, 8-18.	8.3	35
66	Facile Synthesis of Threeâ€Dimensional Ptâ€TiO ₂ Nanoâ€networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane. Angewandte Chemie, 2016, 128, 12445-12449.	2.0	35
67	Neural differentiation on synthetic scaffold materials. Biomaterials Science, 2013, 1, 1119.	5.4	34
68	Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing. ACS Applied Materials & Interfaces, 2010, 2, 2892-2897.	8.0	33
69	Grating coupler integrated photodiodes for plasmon resonance based sensing. Lab on A Chip, 2011, 11, 282-287.	6.0	33
70	Growth and Differentiation of Prechondrogenic Cells on Bioactive Self-Assembled Peptide Nanofibers. Biomacromolecules, 2013, 14, 17-26.	5.4	33
71	Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres. ACS Applied Materials & Interfaces, 2016, 8, 11280-11287.	8.0	33
72	Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. Langmuir, 2017, 33, 7947-7956.	3.5	32

#	Article	IF	CITATIONS
73	Template free preparation of nanoporous organically modified silica thin films on flexible substrates. Journal of Materials Chemistry, 2011, 21, 14830.	6.7	31
74	Angiogenic Peptide Nanofibers Improve Wound Healing in STZ-Induced Diabetic Rats. ACS Biomaterials Science and Engineering, 2016, 2, 1180-1189.	5.2	31
75	Angiogenic Heparin-Mimetic Peptide Nanofiber Gel Improves Regenerative Healing of Acute Wounds. ACS Biomaterials Science and Engineering, 2017, 3, 1296-1303.	5.2	30
76	Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity. Molecular Pharmaceutics, 2017, 14, 3660-3668.	4.6	30
77	Protective therapeutic effects of peptide nanofiber and hyaluronic acid hybrid membrane in in vivo osteoarthritis model. Acta Biomaterialia, 2018, 73, 263-274.	8.3	29
78	Laminin mimetic peptide nanofibers regenerate acute muscle defect. Acta Biomaterialia, 2017, 60, 190-200.	8.3	28
79	Oligonucleotide Delivery with Cell Surface Binding and Cell Penetrating Peptide Amphiphile Nanospheres. Molecular Pharmaceutics, 2015, 12, 1584-1591.	4.6	27
80	Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment. Biomacromolecules, 2016, 17, 1280-1291.	5.4	27
81	Diabetic wound regeneration using heparin-mimetic peptide amphiphile gel in db/db mice. Biomaterials Science, 2017, 5, 1293-1303.	5.4	27
82	Tenascin-C derived signaling induces neuronal differentiation in a three-dimensional peptide nanofiber gel. Biomaterials Science, 2018, 6, 1859-1868.	5.4	27
83	Cell penetrating peptide amphiphile integrated liposomal systems for enhanced delivery of anticancer drugs to tumor cells. Faraday Discussions, 2013, 166, 269.	3.2	26
84	Dentin Phosphoprotein Mimetic Peptide Nanofibers Promote Biomineralization. Macromolecular Bioscience, 2019, 19, e1800080.	4.1	26
85	Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct. Biomaterials Science, 2014, 2, 903-914.	5.4	25
86	Tenascin-C Mimetic Peptide Nanofibers Direct Stem Cell Differentiation to Osteogenic Lineage. Biomacromolecules, 2014, 15, 4480-4487.	5.4	25
87	Atomic force microscopy for the investigation of molecular and cellular behavior. Micron, 2016, 89, 60-76.	2.2	25
88	A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold. Biomaterials Science, 2016, 4, 1328-1339.	5.4	25
89	N-Cadherin Mimetic Peptide Nanofiber System Induces Chondrogenic Differentiation of Mesenchymal Stem Cells. Bioconjugate Chemistry, 2019, 30, 2417-2426.	3.6	25
90	Multi-Domain Short Peptide Molecules for in Situ Synthesis and Biofunctionalization of Gold Nanoparticles for Integrin-Targeted Cell Uptake. ACS Applied Materials & Interfaces, 2015, 7, 10677-10683.	8.0	24

6

#	Article	IF	CITATIONS
91	Amyloid-like peptide nanofiber templated titania nanostructures as dye sensitized solar cell anodic materials. Journal of Materials Chemistry A, 2013, 1, 10979.	10.3	23
92	Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis. Scientific Reports, 2015, 5, 16460.	3.3	23
93	Antigenic GM3 Lactone Mimetic Molecule Integrated Mannosylated Glycopeptide Nanofibers for the Activation and Maturation of Dendritic Cells. ACS Applied Materials & Interfaces, 2017, 9, 16035-16042.	8.0	23
94	Promotion of neurite outgrowth by rationally designed NGF-β binding peptide nanofibers. Biomaterials Science, 2018, 6, 1777-1790.	5.4	23
95	Regenerative effects of peptide nanofibers in an experimental model of Parkinson's disease. Acta Biomaterialia, 2016, 46, 79-90.	8.3	22
96	Collagen Peptide Presenting Nanofibrous Scaffold for Intervertebral Disc Regeneration. ACS Applied Bio Materials, 2019, 2, 1686-1695.	4.6	22
97	Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers. Journal of Materials Chemistry, 2012, 22, 2553-2559.	6.7	20
98	Noncovalent functionalization of mesoporous silica nanoparticles with amphiphilic peptides. Journal of Materials Chemistry B, 2014, 2, 2168-2174.	5.8	20
99	Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls. Applied Surface Science, 2014, 308, 50-57.	6.1	20
100	Sciatic nerve regeneration induced by glycosaminoglycan and laminin mimetic peptide nanofiber gels. RSC Advances, 2016, 6, 110535-110547.	3.6	20
101	Amphiphilic peptide coated superparamagnetic iron oxide nanoparticles for in vivo MR tumor imaging. RSC Advances, 2016, 6, 45135-45146.	3.6	19
102	Threeâ€Dimensional Laminin Mimetic Peptide Nanofiber Gels for In Vitro Neural Differentiation. Biotechnology Journal, 2017, 12, 1700080.	3.5	19
103	Supramolecular Peptide Nanofiber Morphology Affects Mechanotransduction of Stem Cells. Biomacromolecules, 2017, 18, 3114-3130.	5.4	18
104	The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides. Nanoscale, 2018, 10, 9987-9995.	5.6	18
105	Biocompatible Supramolecular Catalytic One-Dimensional Nanofibers for Efficient Labeling of Live Cells. Bioconjugate Chemistry, 2015, 26, 2371-2375.	3.6	17
106	In Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β-Cyclodextrin–Adamantane Complexation for Studying Cell-Instructive Peptide Environment. ACS Applied Bio Materials, 2020, 3, 1116-1128.	4.6	17
107	Supramolecular Nanostructure Formation of Coassembled Amyloid Inspired Peptides. Langmuir, 2016, 32, 6506-6514.	3.5	16
108	Mineralized Peptide Nanofiber Gels for Enhanced Osteogenic Differentiation. ChemNanoMat, 2018, 4, 837-845.	2.8	15

#	Article	IF	CITATIONS
109	One-Dimensional Peptide Nanostructure Templated Growth of Iron Phosphate Nanostructures for Lithium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 17421-17427.	8.0	14
110	Gemcitabine Integrated Nano-Prodrug Carrier System. Bioconjugate Chemistry, 2017, 28, 1491-1498.	3.6	14
111	Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation. Journal of Materials Chemistry B, 2017, 5, 4890-4900.	5.8	14
112	Spatial Organization of Functional Groups on Bioactive Supramolecular Glycopeptide Nanofibers for Differentiation of Mesenchymal Stem Cells (MSCs) to Brown Adipogenesis. Bioconjugate Chemistry, 2017, 28, 740-750.	3.6	14
113	Peptide-Based Materials for Cartilage Tissue Regeneration. Advances in Experimental Medicine and Biology, 2017, 1030, 155-166.	1.6	14
114	Peptide gels for controlled release of proteins. Therapeutic Delivery, 2020, 11, 193-211.	2.2	14
115	Neuroactive Peptide Nanofibers for Regeneration of Spinal Cord after Injury. Macromolecular Bioscience, 2021, 21, 2000234.	4.1	14
116	Highly Sensitive Determination of 2,4,6-Trinitrotoluene and Related Byproducts Using a Diol Functionalized Column for High Performance Liquid Chromatography. PLoS ONE, 2014, 9, e99230.	2.5	14
117	Biotin Functionalized Selfâ€Assembled Peptide Nanofiber as an Adjuvant for Immunomodulatory Response. Biotechnology Journal, 2020, 15, e2000100.	3.5	12
118	Nanomechanical Characterization of Osteogenic Differentiation of Mesenchymal Stem Cells on Bioactive Peptide Nanofiber Hydrogels. Advanced Materials Interfaces, 2017, 4, 1700090.	3.7	10
119	Probe microscopy methods and applications in imaging of biological materials. Seminars in Cell and Developmental Biology, 2018, 73, 153-164.	5.0	10
120	Noncovalent functionalization of a nanofibrous network with a bio-inspired heavy metal binding peptide. RSC Advances, 2013, 3, 24215.	3.6	9
121	Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect. Microsystem Technologies, 2017, 23, 889-897.	2.0	8
122	Water-insoluble polymer-free uniform nanofibers of peracetylated cyclodextrin by electrospinning. Journal of Materials Science, 2020, 55, 11752-11762.	3.7	8
123	Self-assembled peptide nanofiber templated ALD growth of TiO ₂ and ZnO semiconductor nanonetworks. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3238-3244.	1.8	7
124	Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers. Nanotechnology, 2018, 29, 285701.	2.6	7
125	Generation of Chimeric "ABS Nanohemostat―Complex and Comparing Its Histomorphological <i>In Vivo</i> Effects to the Traditional Ankaferd Hemostat in Controlled Experimental Partial Nephrectomy Model. International Journal of Biomaterials, 2013, 2013, 1-10.	2.4	6
126	Extracellular Matrix Mimetic Peptide Scaffolds for Neural Stem Cell Culture and Differentiation. Methods in Molecular Biology, 2013, 1202, 131-148.	0.9	6

#	Article	IF	CITATIONS
127	Controlled enzymatic stability and release characteristics of supramolecular chiral peptide amphiphile nanofiber gels. Current Applied Physics, 2017, 17, 785-792.	2.4	6
128	Nanomechanical characterization by double-pass force–distance mapping. Nanotechnology, 2011, 22, 295704.	2.6	5
129	A Modular Antigen Presenting Peptide/Oligonucleotide Nanostructure Platform for Inducing Potent Immune Response. Advanced Biology, 2017, 1, e1700015.	3.0	5
130	Peptide nanofibers for controlled growth factor release. Therapeutic Delivery, 2013, 4, 651-654.	2.2	4
131	Bioactive peptide functionalized superparamagnetic iron oxide nanoparticles (SPIONs) for targeted imaging with MRI. , 2015, , .		3
132	Supramolecular Polymers: Mussel Inspired Dynamic Cross‣inking of Selfâ€Healing Peptide Nanofiber Network (Adv. Funct. Mater. 16/2013). Advanced Functional Materials, 2013, 23, 2100-2100.	14.9	2
133	Biomaterials: Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Selfâ€Assembling Peptide Amphiphiles (Adv. Funct. Mater. 17/2017). Advanced Functional Materials, 2017, 27, .	14.9	2
134	Materials for Articular Cartilage Regeneration. Recent Patents on Biomedical Engineering, 2012, 5, 187-199.	0.5	2
135	Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection. Turkish Journal of Chemistry, 2015, 39, 697-713.	1.2	2
136	Next Generation Nanomedicine in the Genesis of "Ankaferd Blood Stopper Nanohemostat― Clinical and Applied Thrombosis/Hemostasis, 2014, 20, 456-457.	1.7	1
137	Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation) Tj ETQq1	1 00788431	4 ngBT /Over
138	Bioactive Nanomaterials for Neural Engineering. , 2016, , 181-206.		1
139	Nanomaterials for Medicine. , 2016, , 1-6.		1
140	Mechanical Properties of Differentiating Stem Cells on Peptide Nanofibers. Biophysical Journal, 2016, 110, 624a.	0.5	1
141	Self-assembled peptide nanostructures and their gels for regenerative medicine applications. , 2018, , 455-473.		1
142	Peptide Nanofiber Scaffolds for Multipotent Stromal Cell Culturing. Methods in Molecular Biology, 2013, 1058, 61-76.	0.9	0
143	Design of amphiphilic peptide nanofibers. , 2020, , 185-197.		Ο
144	Design and Synthesis of Peptides for Developing Biomaterials. RSC Soft Matter, 2020, , 1-18.	0.4	0