Bo Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7739493/publications.pdf Version: 2024-02-01

RO DENC

#	Article	IF	CITATIONS
1	Food chain chaos due to Shilnikov's orbit. Chaos, 2002, 12, 533-538.	2.5	57
2	Food chain chaos due to junction-fold point. Chaos, 2001, 11, 514-525.	2.5	50
3	Food chain chaos with canard explosion. Chaos, 2004, 14, 1083-1092.	2.5	49
4	Homoclinic twisting bifurcations and cusp horseshoe maps. Journal of Dynamics and Differential Equations, 1993, 5, 417-467.	1.9	40
5	CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 823-841.	1.7	37
6	Food chain chaos due to transcritical point. Chaos, 2003, 13, 578-585.	2.5	34
7	Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells. Journal of Mathematical Biology, 1999, 38, 21-78.	1.9	24
8	Smooth conjugacy of centre manifolds. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1992, 120, 61-77.	1.2	17
9	Competitive coexistence in stoichiometric chaos. Chaos, 2007, 17, 033108.	2.5	15
10	Equilibriumizing all food chain chaos through reproductive efficiency. Chaos, 2006, 16, 043125.	2.5	14
11	Biological control does not imply paradox. Mathematical Biosciences, 2007, 208, 26-32.	1.9	13
12	CONSTRUCTING LORENZ TYPE ATTRACTORS THROUGH SINGULAR PERTURBATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1995, 05, 1633-1642.	1.7	11
13	EXPONENTIAL EXPANSION WITH PRINCIPAL EIGENVALUES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 1161-1167.	1.7	11
14	A mathematical model that mimics the bursting oscillations in pancreatic Î ² -cells. Mathematical Biosciences, 1994, 119, 241-250.	1.9	10
15	The Time Invariance Principle, the absence of ecological chaos, and a fundamental pitfall of discrete modeling. Ecological Modelling, 2008, 215, 287-292.	2.5	10
16	Chaotic Coexistence in a Top-predator Mediated Competitive Exclusive web. Journal of Dynamics and Differential Equations, 2004, 16, 1061-1092.	1.9	9
17	FOOD WEB CHAOS WITHOUT SUBCHAIN OSCILLATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 3481-3492.	1.7	8
18	Numerical proof for chemostat chaos of Shilnikov's type. Chaos, 2017, 27, 033106.	2.5	8

Bo Deng

#	Article	IF	CITATIONS
19	SPIRAL-PLUS-SADDLE ATTRACTORS AND ELEMENTARY MECHANISMS FOR CHAOS GENERATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 513-527.	1.7	6
20	CONCEPTUAL CIRCUIT MODELS OF NEURONS. Journal of Integrative Neuroscience, 2009, 08, 255-297.	1.7	6
21	Alternative Models to Hodgkin–Huxley Equations. Bulletin of Mathematical Biology, 2017, 79, 1390-1411.	1.9	6
22	A male spider׳s ornamentation polymorphism maintained by opposing selection with two niches. Journal of Theoretical Biology, 2014, 357, 103-111.	1.7	5
23	CHAOTIC ATTRACTORS IN ONE-DIMENSION GENERATED BY A SINGULAR SHILNIKOV ORBIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 3059-3083.	1.7	3
24	An Inverse Problem: Trappers Drove Hares to Eat Lynx. Acta Biotheoretica, 2018, 66, 213-242.	1.5	3
25	From Energy Gradient and Natural Selection to Biodiversity and Stability of Ecosystems. Open Ecology Journal, 2010, 3, 95-110.	2.0	3
26	Why is the Number of DNA Bases 4?. Bulletin of Mathematical Biology, 2006, 68, 727-733.	1.9	2
27	Can discrete modellers work without the TIP?. Ecological Modelling, 2009, 220, 2600-2601.	2.5	2
28	Neural spike renormalization. Part I — Universal number 1. Journal of Differential Equations, 2011, 250, 2940-2957.	2.2	2
29	MOCASSIN-prot: a multi-objective clustering approach for protein similarity networks. Bioinformatics, 2018, 34, 1270-1277.	4.1	2
30	ON A NONLINEAR COMMUNICATION SCHEME. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2227-2232.	1.7	1
31	Erratum to "Chaotic Coexistence in a Top-Predator Mediated Competitive Exclusive Web―[J. Dynam. Diff. Eq. 16, 10611092 (2004)]. Journal of Dynamics and Differential Equations, 2005, 17, 217-217.	1.9	1
32	Neuron model with conductance-resistance symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125976.	2.1	1
33	The Origin of Two Sexes Through Optimization of Recombination Entropy Against Time and Energy. Bulletin of Mathematical Biology, 2007, 69, 2105-2114.	1.9	0
34	The existence of \$ omega \$-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - Series B, 2022, .	0.9	0